http://iet.metastore.ingenta.com
1887

Algorithm for islanding detection in photovoltaic generator network connected to low-voltage grid

Algorithm for islanding detection in photovoltaic generator network connected to low-voltage grid

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new islanding detection method has been developed based on the analysis of negative sequence components of the voltage at the point of common coupling, using wavelet packet transform. The binary tree classifier is used for decision-making mechanism. The proposed algorithm is able to reduce the non-detection zone to zero and is able to detect islanding within 5 ms. The developed algorithm can also discriminate between the islanding and other events in the system. The simulation results carried out by MATLAB along with Simulink toolbox are used to test the performance of the proposed algorithm in a photovoltaic generator network connected to the low-voltage grid.

References

    1. 1)
      • 1. Guerrero, J.M., Blaabjerg, F., Zhelev, T., et al: ‘Distributed generation: toward a new energy paradigm’, IEEE Ind. Electron. Mag., 2010, 4, (1), pp. 5264.
    2. 2)
      • 2. Shahidehpour, M., Schwartz, F.: ‘Don't let the sun go down on PV’, IEEE Power Energy Mag., 2004, 2, (3), pp. 4048.
    3. 3)
      • 3. ‘IEEE recommended practice for utility interface of PV system’, IEEE standard 929-2000. January 2000.
    4. 4)
      • 4. Blaabjerg, F., Chen, Z., Kjaer, S.B.: ‘Power electronics as an efficient interface in dispersed power generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11841194.
    5. 5)
      • 5. ‘IEEE standard conformance test procedures for equipment interconnecting distributed resources with electric power systems’. IEEE Std. 15471-2005, July 2005.
    6. 6)
      • 6. ‘Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use with Distributed Energy Resources’. UL STD 1741, November 2005.
    7. 7)
      • 7. Ye, Z., Kolwalkar, A., Zhang, Y., et al: ‘Evaluation of anti-islanding schemes based on non-detection zone concept’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11711176.
    8. 8)
      • 8. Bower, W., Ropp, M.: ‘Evaluation of islanding detection methods for utility-interactive inverters in photovoltaic systems’. Sandia Rep. SAND2002-3591, Sandia Nat. Labs., Albuquerque, NM, USA, November 2002.
    9. 9)
      • 9. Freitas, W., Wilsun, X., Affonso, C.M., et al: ‘Comparative analysis between ROCOF and vector surge relays for distributed generation applications’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 13151324.
    10. 10)
      • 10. Samui, A., Samantaray, S.R.: ‘Assessment of ROCPAD relay for islanding detection in distributed generation’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 391398.
    11. 11)
      • 11. Jang, S.-I., Kim, K.H.: ‘An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 745752.
    12. 12)
      • 12. Raza, S., Mokhlis, H., Arof, H., et al: ‘Application of signal processing techniques for islanding detection of distributed generation in distribution network: a review’, Energy Convers. Manage., 2015, 96, pp. 613624.
    13. 13)
      • 13. Vyas, S., Kumara, R., Kavasseri, R.: ‘Data analytics and computational methods for anti-islanding of renewable energy based distributed generators in power grids’, Renew. Sust. Energy Rev., 2017, 69, pp. 493502.
    14. 14)
      • 14. Kim, I.S.: ‘Islanding detection technique using grid-harmonic parameters in the photovoltaic system’. Energy Procedia, 2012, pp. 137141.
    15. 15)
      • 15. Jay-Hyung, K., Jun-Gu, K., Young-Hyok, J., et al: ‘An islanding detection method for a grid-connected system based on the Goertzel algorithm’, IEEE Trans.Power Electron., 2011, 26, (4), pp. 10491055.
    16. 16)
      • 16. Shayeghi, H., Sobhani, B.: ‘Zero NDZ assessment for anti-islanding protection using wavelet analysis and neuro-fuzzy system in an inverter-based distributed generation’, Energy Convers. Manage., 2014, 79, pp. 616625. doi: 10.1016/j.enconman.2013.12.062.
    17. 17)
      • 17. Karegar, H.K., Sobhani, B.: ‘Wavelet transform method for islanding detection of wind turbines’, Renew. Energy, 2014, 38, (1), pp. 94106.
    18. 18)
      • 18. Hanif, M., Basu, M., Gaughan, K.: ‘Development of EN50438 compliant wavelet-based islanding detection technique for three-phase static distributed generation systems’, IET Renew. Power Gener., 2012, 6, (4), pp. 289301.
    19. 19)
      • 19. Heidari, M., Seifossadat, G., Razaz, M.: ‘Application of decision tree and discrete wavelet transform for an optimized intelligent based islanding detection method in distributed systems with distributed generations’, Renew. Sust. Energy Rev., 2013, 27, pp. 525532. doi: 10. 1016/j.rser.2013.06.047.
    20. 20)
      • 20. Biswal, B, Dash, P.K., Panigrahi, B.K.: ‘Non-stationary power signal processing for pattern recognition using HS-transform’, Appl. Soft Comput., 2009, 9, (1), pp. 107117.
    21. 21)
      • 21. Saleh, S.A., Aljankawey, A.S., Meng, R., et al: ‘Anti-islanding protection based on signatures extracted from the instantaneous apparent power’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 58725891.
    22. 22)
      • 22. Kar, S, Samantaray, S.R.: ‘Data-mining-based intelligent anti-islanding protection relay for distributed generations’, IET Gener.Transm.Distrib., 2014, 8, (4), pp. 629639.
    23. 23)
      • 23. Gupta, N, Garg, R, Kumar, P.: ‘Sensitivity and reliability models of a PV system connected to the grid’, Renew. Sust. Energy Rev., 2017, 69, pp. 188196. doi: 10.1016/j.rser.2016.11.031.
    24. 24)
      • 24. Gupta, N, Garg, R, Kumar, P.: ‘Characterization study of PV module connected to microgrid’. Proc. IEEE India Int. Conf. JMI, India, December 2015. doi: 10.1109/lNDICON.2015.7443360.
    25. 25)
      • 25. Gupta, N, Garg, R.: ‘Tuning of asymmetrical fuzzy logic control algorithm for SPV system connected to grid’, Int. J. Hydrog. Energy, 2017, 42, (26), pp. 1637516385. doi: 10.1016/j.ijhydene.2017.05.103.
    26. 26)
      • 26. Ray, P.K., Kishor, N., Mohanty, S.R.: ‘Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and transform’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 10821094.
    27. 27)
      • 27. Available at http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/chapter_7/7_2.html.
    28. 28)
      • 28. Available at http://in.mathworks.com/help/wavelet/examples/wavelet-packets-decomposing-the-details.html.
    29. 29)
      • 29. Do, H.T., Zhang, X., Nguyen, N.V., et al: ‘Passive-islanding detection method using the wavelet packet transform in grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 69556967.
    30. 30)
      • 30. Samui, A., Samantaray, S.R.: ‘Wavelet singular entropy-based islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 411418.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1735
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1735
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address