Method for voltage drop compensation in a multi-terminal dc network

Method for voltage drop compensation in a multi-terminal dc network

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The power flow is driven by the voltage drop in the dc network. In long-distance bulk power transmission cases, the voltage drop across the network might be severe with some node voltages susceptible to load variation. To tackle this problem, a voltage drop compensation method is proposed. A component called voltage compensator (VOLTCOM) is integrated inside the network to modify the network topology and thereby reduce the voltage drop and node voltage variation. From a system perspective, the characteristic of the VOLTCOM is designed and the compensation principle is explained. Then a scheme to lay out VOLTCOMs in the network is given with the objective to minimise the power rating of VOLTCOMs needed. The simulation results show that the load is transmitted with less voltage drop. The voltages remain in the stipulated range even when the grid reaches the planned operating status limits. Also, the VOLTCOM auto-regulates its output without communications with converter stations. The techno-economic assessment demonstrates the economy of the method compared to enlarging conductor cross-section. As an alternative to enlarging conductor cross-section, the proposed method provides an innovation worth consideration in network design.


    1. 1)
      • 1. Kalair, A., Abas, N., Khan, N.: ‘Comparative study of HVAC and HVDC transmission systems’, Renew. Sust. Energy Rev., 2016, 59, pp. 16531675.
    2. 2)
      • 2. Fu, Y., Wang, C., Tian, W., et al: ‘Integration of large-scale offshore wind energy via VSC-HVDC in day-ahead scheduling’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 535545.
    3. 3)
      • 3. ‘Technical guidelines for first HVDC grids – a European study group based on an initiative of the German commission for electrical, electronic & information technologies’. Available at, accessed 2014.
    4. 4)
      • 4. ‘Roadmap to the Supergrid Technologies Revision 2014’. Available at, accessed 23 June 2014.
    5. 5)
      • 5. ‘HVDC Grid Feasibility Study’. Available at, accessed April 2013.
    6. 6)
      • 6. Tang, G., Xu, Z., Liu, S., et al: ‘A novel DC voltage control strategy for VSC-MTDC systems’, Autom. Electr. Power Syst., 2013, 37, (15), pp. 125132.
    7. 7)
      • 7. Zhao, J., Dörfler, F.: ‘Distributed control and optimization in DC microgrids’, Automatica, 2015, 61, pp. 1826.
    8. 8)
      • 8. Abdelwahed, M.A., El-Saadany, E.F.: ‘Power sharing control strategy of multiterminal VSC-HVDC transmission systems utilizing adaptive voltage droop’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 605615.
    9. 9)
      • 9. Stamatiou, G., Bongiorno, M.: ‘Power-dependent droop-based control strategy for multi-terminal HVDC transmission grids’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 383391.
    10. 10)
      • 10. Zhao, X., Li, K.: ‘Droop setting design for multi-terminal HVDC grids considering voltage deviation impacts’, Electr. Power Syst. Res., 2015, 123, pp. 6775.
    11. 11)
      • 11. Sarlette, A., Dai, J., Phulpin, Y., et al: ‘Cooperative frequency control with a multi-terminal high-voltage DC network’, Automatica, 2012, 48, (12), pp. 31283134.
    12. 12)
      • 12. Chen, C., Zhang, K., Yuan, K., et al: ‘Disturbance rejection-based LFC for multi-area parallel intercomnected AC/DC system’, IET Gener. Transm. Distrib., 2016, 10, (16), pp. 41054117.
    13. 13)
      • 13. Mu, Q., Liang, J., Li, Y., et al: ‘Power flow control devices in DC grids’. 2012 IEEE Power and Energy Society General Meeting, San Diego, USA, July 2012.
    14. 14)
      • 14. Jovcic, D., Hajian, M., Zhang, H., et al: ‘Power flow control in DC transmission grids using mechanical and semiconductor based DC/DC devices’. 10th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, December 2012.
    15. 15)
      • 15. Jovcic, D., Ooi, B.T.: ‘Developing DC transmission networks using DC transformers’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 25352543.
    16. 16)
      • 16. Chen, W., Zhu, X., Yao, L., et al: ‘An interline DC power-flow controller (IDCPFC) for multiterminal HVDC system’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 20272036.
    17. 17)
      • 17. Ranjram, M., Lehn, P.W.: ‘A multiport power-flow controller for DC transmission grids’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 389396.
    18. 18)
      • 18. Juhlin, L.E.: ‘Power flow control in a meshed HVDC power transmission network’. US Patent 2012/0033462, February 2012.
    19. 19)
      • 19. Wang, S., Guo, J., Li, C., et al: ‘Coordination of DC power flow controllers and ACDC converters on optimising the delivery of wind power’, IET Renew. Power Gener., 2016, 10, (6), pp. 815823.
    20. 20)
      • 20. Balasubramaniam, S., Liang, J., Ugalde-Loo, C.E.: ‘Control, dynamics and operation of a dual H-bridge current flow controller’. 7th Annual IEEE Energy Conversion Congress and Exposition, Montreal, Canada, September 2015, pp. 23862393.
    21. 21)
      • 21. Wang, D., Hu, L., Qiu, D.: ‘Optimal locating method of voltage-type DC power flow controller’, Autom. Electr. Power Syst., 2016, 40, (21), pp. 7883.
    22. 22)
      • 22. Tang, G., Luo, X., Wei, X.: ‘Multi-terminal HVDC and DC grid technology’, Proc. CSEE, 2013, 33, (10), pp. 817.
    23. 23)
      • 23. Wang, W., Barnes, M.: ‘Power flow algorithms for multi-terminal VSC-HVDC with droop control’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 17211730.
    24. 24)
      • 24. ‘Voltage source converter (VSC) HVDC for power transmission – economic aspects and comparison with other AC and DC Technologies’. Available at, accessed April 2012.
    25. 25)
      • 25. Kong, X., Jia, H.: ‘Techno-economic analysis of VSC-HVDC transmission system for offshore wind’. 2011 Asia-Pacific Power and Energy Engineering Conf., Wuhan, China, March 2011.
    26. 26)
      • 26. An, T., Yue, B., Yang, P., et al: ‘A determination method of DC voltage levels for DC grids’, Proc. CSEE, 2016, 36, (11), pp. 28712879.
    27. 27)
      • 27. Liang, H., Zhang, W., Liang, X.: ‘Research on economic optimization of section areas of conductors for UHVDC projects’, Proc. CSEE, 2013, 33, (31), pp. 114119.
    28. 28)
      • 28. ‘Guide for the development of models for HVDC converters in a HVDC grid’. Available at, accessed December 2014.
    29. 29)
      • 29. Liu, J., Yao, J., Yang, S., et al: ‘Loss analysis of two kinds of flexible HVDC converters’. IEEE 7th Int. Power Electronics and Motion Control Conf., Harbin, China, June 2012.
    30. 30)
      • 30. ‘Specification IGBT module 2MBI100U4H-170’. Available at, accessed 31 May 2006.
    31. 31)
      • 31. ‘Trench IGBT Modules SKM 145GB176D’. Available at, accessed 28 June 2010.
    32. 32)
      • 32. ‘Technical information IGBT-module FF150R17ME3G’. Available at, accessed 4 March 2013.

Related content

This is a required field
Please enter a valid email address