Risk-based coalition of cooperative microgrids in electricity market environment

Risk-based coalition of cooperative microgrids in electricity market environment

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes an energy management framework for cooperative operation of multiple coupled microgrids, in electricity market environment. The framework focuses on a scalable profit maximisation approach across the entire smart grid for coordinated control and management of the coalition forming microgrids and the utility. The optimal control problem only uses the power exchange schedules as control signals between microgrids. Uncertainties pertaining to renewable power generation and load demand are described via scenarios. In this stochastic framework, conditional value-at-risk is considered as a risk measure to lessen the danger to which the aggregator is exposed to because of fluctuating power transactions induced by such uncertainties. The framework is further extended to evaluate the impact of cooperative operation on the portfolio returns of participating microgrids over the project lifetime. Several case studies are simulated in-order to validate the proposed risk-constrained framework. The results obtained clearly show that the proposed framework is effective in limiting the risk of the profit variability of the microgrids, at the cost of a small reduction in their expected profit.


    1. 1)
      • 1. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids: an overview of ongoing research, development, and demonstration projects’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    2. 2)
      • 2. Marzband, M., Ghazimirsaeid, S.S., Uppal, H., et al: ‘A real-time evaluation of energy management systems for smart hybrid home microgrids’, Electr. Power Syst. Res., 2017, 143, pp. 624633.
    3. 3)
      • 3. Fathi, M., Bevrani, H.: ‘Statistical cooperative power dispatching in interconnected microgrids’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 586593.
    4. 4)
      • 4. Wang, Y., Mao, S., Nelms, R.M.: ‘On hierarchal power scheduling for the macrogrid and cooperative microgrids’, IEEE Trans. Indus. Inform., 2015, 11, (6), pp. 15741584.
    5. 5)
      • 5. Nunna, H.S.V.S.K., Doolla, S.: ‘Demand response in smart distribution system with multiple microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16411649.
    6. 6)
      • 6. Marzband, M., Moghaddam, M.M., Akorede, M.F., et al: ‘Adaptive load shedding scheme for frequency stability enhancement in microgrids’, Electr. Power Syst. Res., 2016, 140, pp. 7886.
    7. 7)
      • 7. Marzband, M., Javadi, M., Dominguez-Garcia, J.L., et al: ‘Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties’, IET Gener. Trans. Distrib., 2016, 10, (12), pp. 29993009.
    8. 8)
      • 8. Smith, J.C., Beuning, S., Durrwachter, H., et al: ‘The wind at our backs’, IEEE Power Energy Mag., 2010, 8, (5), pp. 6371.
    9. 9)
      • 9. Cailliau, M., Foresti, M., Villar, C.M.: ‘Winds of change’, IEEE Power Energy Mag., 2010, 8, (5), pp. 5362.
    10. 10)
      • 10. Valinejada, J., Marzband, M., Funsho, M., et al: ‘Generation expansion planning in electricity market considering uncertainty in load demand and presence of strategic GENCOs’, Electr. Power Syst. Res., 2017, 152, pp. 92104.
    11. 11)
      • 11. Marzband, M., Ardeshiri, R.R., Moafi, M., et al: ‘Distributed generation for economic benefit maximization through coalition formation–based game theory concept’, Int. Trans. Electr. Energy Syst., 2016, 27, (6), pp. 116.
    12. 12)
      • 12. Marzband, M., Azarinejadian, F., Savaghebi, M., et al: ‘An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with Markov chain’, IEEE Syst. J., 2017, 11, (3), pp. 17121722.
    13. 13)
      • 13. Marzband, M., Yousefnejad, E., Sumper, A., et al: ‘Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization’, Electr. Power Energy Syst., 2016, 75, pp. 265274.
    14. 14)
      • 14. Marzband, M., Ghadimi, M., Sumper, A., et al: ‘Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode’, Appl. Energy, 2014, 128, pp. 164174.
    15. 15)
      • 15. Marzband, M., Parhizi, N., Adabi, J.: ‘Optimal energy management for stand-alone microgrids based on multi-period imperialist competition algorithm considering uncertainties: experimental validation’, Int. Trans. Electr. Energy Syst., 2016, 26, pp. 13581372.
    16. 16)
      • 16. Marzband, M., Sumper, A., Ruiz-Alvarez, A., et al: ‘Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets’, Appl. Energy, 2013, 106, pp. 365376.
    17. 17)
      • 17. Marzband, M., Sumper, A., Dominguez-Garcia, J.L., et al: ‘Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP’, Energy Convers. Manage., 2013, 76, pp. 314322.
    18. 18)
      • 18. Nikmehr, N., Najafi-Ravadanegh, S.: ‘Optimal power dispatch of multi-microgrids at future smart distribution grids’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 16481657.
    19. 19)
      • 19. Nikmehr, N., Najafi-Ravadanegh, S.: ‘Optimal operation of distributed generations in micro-grids under uncertainties in load and renewable power generation using heuristic algorithm’, IET Renew. Power Gener., 2015, 9, (8), pp. 982990.
    20. 20)
      • 20. Asimakopoulou, G.E., Dimeas, A.L., Hatziargyriou, N.D.: ‘Leader follower strategies for energy management of multi-microgrids’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 19091916.
    21. 21)
      • 21. Tian, P., Wang, K., Ding, R.: ‘A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22302241.
    22. 22)
      • 22. Marzband, M., Parhizi, N., Savaghebi, M., et al: ‘Distributed smart decision-making for a multi-microgrid system based on a hierarchical interactive architecture’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 637648.
    23. 23)
      • 23. Manshadi, S.D., Khodayar, M.E.: ‘A hierarchical electricity market structure for the smart grid paradigm’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 18661875.
    24. 24)
      • 24. Nguyen, D.T., Le, L.B.: ‘Risk-constrained profit maximization for microgrid aggregators with demand response’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 135146.
    25. 25)
      • 25. Bialek, J.: ‘Tracing-based unifying framework for transmission pricing of cross-border trades in Europe’. Int. Conf. Electric Utility Deregulation and Restructuring, and Power Technologies DRPT, London, April 2000.
    26. 26)
      • 26. Kattuman, P., Green, R.J., Bialek, J.: ‘A tracing method for pricing inter-area electricity trades’, 2004, pp. 123. doi: 10.17863/CAM.5179.
    27. 27)
      • 27. Zhang, J., Li, K.-J., Wang, M., et al: ‘A bi-level program for the planning of an islanded microgrid including CAES’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 27682777.
    28. 28)
      • 28. An, D., Yang, Q., Yu, W., et al: ‘Sto2auc: a stochastic optimal bidding strategy for microgrids’, IEEE Internet Things J., 2017, 4, (6), pp. 22602274.
    29. 29)
      • 29. Thatte, A., Xie, L., Viassolo, D., et al: ‘Risk measure based robust bidding strategy for arbitrage using a wind farm and energy storage’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 21912199.
    30. 30)
      • 30. Moradi, M.H., Eskandari, M., Hosseinian, S.M.: ‘Operational strategy optimization in an optimal sized smart microgrid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 10871095.
    31. 31)
      • 31. Rockafellar, R.T., Uryasev, S.: ‘Conditional value-at-risk for general loss distributions’, J. Bank. Financ., 2002, 26, (7), pp. 14431471.
    32. 32)
      • 32. Rockafellar, R.T., Uryasev, S.: ‘Optimization of conditional value-at risk’, J. Risk, 2000, 2, (3), pp. 2141.
    33. 33)
      • 33. Conejo, A.J., Carrion, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, NY, USA, 2010).
    34. 34)
      • 34. Chen, Y., Wen, J., Cheng, S.: ‘Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 294301.
    35. 35)
      • 35. Dupacová, J., Growe-Kuska, N., Romisch, W.: ‘Scenario reduction in stochastic programming: an approach using probability metrics’, Math. Program., 2003, 95, (3), pp. 493511.
    36. 36)
      • 36. Moradi, M.H., Hajinazari, M., Jamasb, S., et al: ‘An energy management system (EMS) strategy for combined heat and power systems based on a hybrid optimization method employing fuzzy programming’, Energy, 2013, 49, (1), pp. 86101.
    37. 37)
      • 37. Saad, W., Han, Z., Poor, H.: ‘Coalitional game theory for cooperative micro-grid distribution networks’. Proc. IEEE ICC’, Kyoto, Japan, June 2011, pp. 15.

Related content

This is a required field
Please enter a valid email address