Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Developing a two-step method to implement residential demand response programmes in multi-carrier energy systems

Expansion of cogeneration technologies, such as combined heat and power units, has boosted the growth of multi-carrier energy systems. A two-step method is presented to enable residential demand response (DR) programmes in the multi-carrier energy systems. In the first step, the energy management system at each home solves an optimisation problem to achieve the desired energy cost and demand schedule for the customer according to received price signals. In the second step, the system operator revises the demand scheduling by running another optimisation problem to minimise the total electrical losses, subject to the operational characteristics of electrical and natural gas systems. In order to persuade customers to participate in the DR programmes, it is guaranteed that the resulted cost of the second step is not more than the desired cost of the customer in the first step. Results of applying the proposed method, incorporating different penetration levels of customer participation in a time-of-use programme is studied in a test energy system. Simulation results verify the effectiveness of proposed method in minimising the total electrical losses, improving the operational characteristics of the energy system as well as providing customers' utilities.

References

    1. 1)
      • 17. Samarakoon, K., Ekanayake, J., Jenkins, N.: ‘Reporting available demand response’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 18421851.
    2. 2)
      • 8. Salimi, M., Ghasemi, H., Adelpour, M., et al: ‘Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity’, IET Gener. Transm. Distrib., 2015, 9, (8), pp. 695707.
    3. 3)
      • 31. González, A.H., De La Cruz, J.M., Toro, B.D., et al: ‘Modeling and simulation of a gas distribution pipeline network’, Appl. Math. Model, 2009, 33, (3), pp. 15841600.
    4. 4)
      • 9. Shabanpour-Haghighi, A., Seifi, A.R., Niknam, T.: ‘A modified teaching-learning based optimization for multi-objective optimal power flow problem’, Energy Convers. Manage., 2014, 77, pp. 597607.
    5. 5)
      • 13. Deng, R., Yang, Z., Chow, M., et al: ‘A survey on demand response in smart grids: mathematical models and approaches’, IEEE Trans. Ind. Inf., 2015, 11, (3), pp. 570582.
    6. 6)
      • 14. Aghaei, J., Alizadeh, M.-I.: ‘Demand response in smart electricity grids equipped with renewable energy sources: a review’, Renew. Sustain. Energy. Rev., 2013, 18, pp. 6472.
    7. 7)
      • 22. Brahman, F., Honarmand, M., Jadid, S.: ‘Optimal electrical and thermal energy management of a residential energy hub integrating demand response and energy storage system’, Energy Build, 2015, 90, pp. 6575.
    8. 8)
      • 24. Pazouki, S., Haghifam, M.R.: ‘Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty’, Elsevier J. Electr. Power Energy Syst., 2016, 80, pp. 219239.
    9. 9)
      • 21. Bahrami, S., Sheikhi, A.: ‘From demand response in smart grid toward integrated demand response in smart energy hub’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 650658.
    10. 10)
      • 25. Rastegar, M., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘Developing a two-level framework for residential energy management’, IEEE Trans. Smart Grid., 2018, 9, (3), pp. 17071717.
    11. 11)
      • 10. Moeini-Aghtaie, M., Abbaspour, A., Fotuhi-Firuzabad, M., et al: ‘A decomposed solution to multiple-energy carriers optimal power flow’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 707716.
    12. 12)
      • 1. The Fuel Cell Industry Review 2015. Available at http://www.fuelcellindustryreview.com/, accessed January 2018.
    13. 13)
      • 4. Andersson, G., Favre-Perrod, P., Fröhlich, K., et al: ‘The energy hub a powerful concept for future energy systems’. Third Annual Carnegie Mellon Conf. Electricity Industry, Pittsburgh, Pennsylvania, USA, 13–14 March 2007.
    14. 14)
      • 5. Zarif, M., Khaleghi, S., Javidi, M.H.: ‘Assessment of electricity price uncertainty impact on the operation of multi-carrier energy systems’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 25862592.
    15. 15)
      • 12. Shabanpour-Haghighi, A., Seifi, A.R.: ‘An integrated steady-state operation assessment of electrical natural gas and district heating networks’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 36363647.
    16. 16)
      • 3. Zhang, X., Shahidehpour, M., Alabdulwahab, A., et al: ‘Optimal expansion planning of energy hub with multiple energy infrastructures’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 23022311.
    17. 17)
      • 11. Shabanpour-Haghighi, A., Seifi, A.R.: ‘Energy flow optimization in multi-carrier systems’, IEEE Trans. Ind. Inf., 2015, 11, (5), pp. 10671077.
    18. 18)
      • 15. U.S. Energy Information Administration, Consumption and Efficiency. Available at https://www.eia.gov/consumption/, accessed at September 2017.
    19. 19)
      • 26. Ferreira, D.S.R., Barroso, L.A., Lino, P.R., et al: ‘Time-of-use tariff design under uncertainty in price elasticities of electricity demand: a stochastic optimization approach’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 22852295.
    20. 20)
      • 18. Vivekananthan, C., Mishra, Y., Ledwich, G., et al: ‘Demand response for residential appliances via customer reward scheme’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 809820.
    21. 21)
      • 28. Coeho, P.M., Pinho, C.: ‘Considerations about equations for steady state flow in natural gas pipelines’, J. Brazil. Soc. Mech. Sci. Eng., 2007, 29, (3), pp. 262273.
    22. 22)
      • 19. Sharma, I., Bhattacharya, K., Caizares, C.: ‘Smart distribution system operations with price-responsive and controllable loads’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 795807.
    23. 23)
      • 16. Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘Benefits of demand response on operation of distribution networks: a case study’, IEEE Syst. J., 2016, 10, (1), pp. 189197.
    24. 24)
      • 29. Moradijoz, M., Moghadam, M.P., Haghifam, M.R., et al: ‘A multi-objective optimization problem for allocating parking lots in a distribution network’, Int. J. Electric. Power Energy Syst., 2013, 46, (1), pp. 115122.
    25. 25)
      • 7. Pazouki, S., Mohsenzadeh, A., Ardalan, S., et al: ‘Optimal place, size, and operation of combined heat and power in multi carrier energy networks considering network reliability, power loss, and voltage profile’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 16151621.
    26. 26)
      • 27. Soroudi, A., Siano, P., Keane, A.: ‘Optimal DR and ESS scheduling for distribution losses payments minimization under electricity price uncertainty’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 261272.
    27. 27)
      • 2. Zhang, X., Che, L., Shahidehpour, M., et al: ‘Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 16581667.
    28. 28)
      • 23. Alipour, M., Zare, K., Abapour, M.: ‘MINLP probabilistic scheduling model for demand response programs integrated energy hubs’, IEEE Trans. Ind. Inf., 2018, 14, (1), pp. 7988.
    29. 29)
      • 6. Shahmohammadi, A., Moradi-Dalvand, M., Ghasemi, H., et al: ‘Optimal design of multi-carrier energy systems considering reliability constraints’, IEEE Trans. Power Deliv., 2015, 30, (8), pp. 878886.
    30. 30)
      • 20. Zhao, L., Yang, Z., Lee, W.J.: ‘The impact of time of use (TOU) rate structure on consumption patterns of the residential customers’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 51305138.
    31. 31)
      • 30. Radial Test Feeders – IEEE Distribution System Analysis Subcommittee. Available at http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.
    32. 32)
      • 32. Xu, Z., Guan, X., Jia, Q.S., et al: ‘Performance analysis and comparison on energy storage devices for smart building energy management’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21362147.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1557
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1557
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address