Wide-area measurement system-based model-free approach of post-fault rotor angle trajectory prediction for on-line transient instability detection

Wide-area measurement system-based model-free approach of post-fault rotor angle trajectory prediction for on-line transient instability detection

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In order to achieve adequate time for emergency control against transient instability, a scheme to predict the post-fault rotor angle trajectory based on the grey Verhulst self-memory model is provided. The proposed scheme is model free and only uses wide-area measurement system data to provide timely, reliable information about the transient rotor angle stability. Moreover, the scheme is model-parameter-adaptive and takes full consideration of the non-linearity as well as uncertainty of power systems. Firstly, the grey Verhulst self-memory prediction model is presented to cope with the strong non-linear and non-autonomous nature of the power system. Secondly, the equal dimension and new information data model as well as the rolling prediction method are adopted to improve adaptability and robustness of prediction. Investigations with the IEEE-39 bus system and NCE China power system indicate that the proposed prediction scheme gives better prediction performance compared with the other two prediction methods, i.e. grey Verhulst prediction and auto-regressive prediction. Furthermore, combined with equal area criterion based on the severely disturbed generator pair, the proposed prediction scheme is conducted to detect transient instability. Simulation results indicate that the proposed prediction scheme is effective for prediction of transient stability.


    1. 1)
      • 1. Zhou, Y., Huang, H., Xu, Z., et al: ‘Wide-area measurement system-based transient excitation boosting control to improve power system transient stability’, IET Gener. Transm. Distrib., 2015, 9, (9), pp. 845854.
    2. 2)
      • 2. Bhui, P., Senroy, N.: ‘Real-time prediction and control of transient stability using transient energy function’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 923934.
    3. 3)
      • 3. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 13871401.
    4. 4)
      • 4. Wang, S., Gao, W., Wang, J., et al: ‘Synchronized sampling technology-based compensation for network effects in WAMS communication’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 923934.
    5. 5)
      • 5. Gurusinghe, D.R., Rajapakse, A.D.: ‘Post-disturbance transient stability status prediction using synchrophasor measurements’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 36563664.
    6. 6)
      • 6. Guo, T., Milanović, J.V.: ‘Online identification of power system dynamic signature using PMU measurements and data mining’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 17601768.
    7. 7)
      • 7. Zhou, Y., Wu, J., Hao, L., et al: ‘Transient stability prediction of power systems using post-disturbance rotor angle trajectory cluster features’, Electr. Power Compon, Syst., 2016, 44, (17), pp. 18791891.
    8. 8)
      • 8. Haque, M.H., Rahim, A.H.M.A.: ‘Determination of first swing stability limit of multimachine power systems through Taylor series expansions’, IEE Proc. Gener. Transm. Distrib., 1989, 136, (6), pp. 373379.
    9. 9)
      • 9. Alinezhad, B., Karegar, H.K.: ‘Out-of-step protection based on equal area criterion’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 968977.
    10. 10)
      • 10. Yan, J., Liu, C.C., Vaidya, U.: ‘A PMU-based monitoring scheme for rotor angle stability’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 21252133.
    11. 11)
      • 11. Sobbouhi, A.R., Aghamohammadi, M.R.: ‘A new algorithm for prediction out-of-step using rotor speed-acceleration based on phasor measurement units (PMU) data’, Electr. Power Compon, Syst., 2015, 43, (13), pp. 14781486.
    12. 12)
      • 12. Chakhchoukh, Y., Vittal, V., Heydt, G.T.: ‘PMU-based state estimation by integrating correlation’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 617626.
    13. 13)
      • 13. Liu, Y., Sun, K., Liu, Y.: ‘A measurement-based power system model for dynamic response estimation and instability warning’, Electr. Power Syst. Res., 2015, 124, pp. 19.
    14. 14)
      • 14. Deng, H., Zhao, J., Liu, Y., et al: ‘A real-time generator-angle prediction method based on the modified grey Verhulst model’. 4th Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies, Weihai, China, July 2011, pp. 179184.
    15. 15)
      • 15. Shi, F., Zhang, H., Xue, G., et al: ‘Instability prediction of the inter-connected power grids based on rotor angle measurement’, Int. J. Electr. Power Energy Syst., 2017, 88, pp. 2132.
    16. 16)
      • 16. Deng, J.: ‘Control problems of grey systems’, Syst. Control Lett., 1982, 1, (5), pp. 288294.
    17. 17)
      • 17. Dejamkhooy, A., Dastfan, A., Ahmadyfard, A.: ‘Modeling and forecasting nonstationary voltage fluctuation based on grey system theory’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 12121219.
    18. 18)
      • 18. Cao, H.: ‘Self-memory equation for atmosphere motion’, Sci. China B, 1993, 36, pp. 845855.
    19. 19)
      • 19. Feng, G., Cao, H., Gao, X., et al: ‘Prediction of precipitation during summer monsoon with self-memorial model’, Adv. Atmos. Sci., 2001, 18, (5), pp. 701709.
    20. 20)
      • 20. Dasgupta, S., Paramasivam, M., Vaidya, U., et al: ‘PMU-based model-free approach for real-time rotor angle monitoring’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 28182819.
    21. 21)
      • 21. Xiang, K., Li, B., Pang, M., et al: ‘Regularized Taylor echo state networks for predictive control of partially observed systems’, IEEE Access, 2016, 4, pp. 33003309.
    22. 22)
      • 22. Rao, J.G., Pradhan, A.K.: ‘Differential power-based symmetrical fault detection during power swing’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15571564.
    23. 23)
      • 23. Pai, A.: ‘Energy function analysis for power system stability’ (Kluwer Academic Publishers, USA, 1989).
    24. 24)
      • 24. Jones, K.D., Pal, A., Thorp, J.S.: ‘Methodology for performing synchrophasor data conditioning and validation’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11211130.
    25. 25)
      • 25. Vittal, V.: ‘Transient stability test system for direct stability methods’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 3743.
    26. 26)
      • 26. He, M., Vittal, V., Zhang, J.S.: ‘Online dynamic security assessment with missing PMU measurements: a data mining approach’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19691977.
    27. 27)
      • 27. Rashidi, M., Farijah, E.: ‘LEs based framework for transient instability prediction and mitigation using PMU data’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 34313440.
    28. 28)
      • 28. Qi, J., Sun, K., Kang, W.: ‘Optimal PMU placement for power system dynamic state estimation by using empirical observability Gramian’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 20412054.
    29. 29)
      • 29. Wei, S., Yang, M., Qi, J., et al: ‘Model-free MLE estimation for online rotor angle stability assessment with PMU data’, IEEE Trans. Power Syst., 2017, PP, (99), pp. 114.
    30. 30)
      • 30. Haque, M.H.: ‘Further developments of the equal-area criterion for multimachine power systems’, Electr. Power. Syst. Res., 1995, 33, (3), pp. 175183.

Related content

This is a required field
Please enter a valid email address