access icon free Coordinated predictive control for wind farm with BESS considering power dispatching and equipment ageing

This study presents a supervisory model predictive control (MPC) scheme for coordinated active power control of a wind farm with a centralised battery energy storage system (BESS). The control target is wind turbine generator (WTG) and BESS coordination to respond to transmission system operator power dispatching, along with equipment ageing deceleration. To alleviate the WTG mechanical fatigue and extend the BESS expected lifetime, the twist angle variation and an index introduced by a weighted ampere-hour (Ah) throughput model are considered in the cost function. The damage equivalent load and weighted Ah throughput are used for the equipment ageing evaluation. Simulations and comparisons are conducted to demonstrate the effectiveness and applicability of the proposed MPC-based supervisory controller design.

Inspec keywords: battery storage plants; turbogenerators; power generation control; power transmission control; power generation dispatch; wind power plants; power control; power apparatus; wind turbines

Other keywords: damage equivalent load; weighted ampere-hour throughput; equipment ageing deceleration; supervisory model predictive control scheme; centralised battery energy storage system; WTG mechanical fatigue; MPC scheme; coordinated active power control; weighted Ah throughput; coordinated predictive control; wind turbine generator; transmission system operator power dispatching; wind farm; BESS

Subjects: a.c. machines; Control of electric power systems; Power system control; Power transmission, distribution and supply; Wind power plants; Power and energy control; Power system management, operation and economics

References

    1. 1)
      • 27. Camacho, E.F., Alba, C.B.: ‘Model predictive control’ (Springer Science & Business Media, London, UK, 2013, 2nd edn.).
    2. 2)
      • 28. Haohuai, W., Yong, T., Junxian, H., et al: ‘Composition modeling and equivalence of an integrated power generation system of wind, photovoltaic and energy storage unit’, Proc. CSEE, 2011, 31, (34), pp. 19.
    3. 3)
      • 8. Khalid, M., Savkin, A.V.: ‘An optimal operation of wind energy storage system for frequency control based on model predictive control’, Renew. Energy, 2012, 48, (6), pp. 127132.
    4. 4)
      • 5. Zhao, H., Wu, Q., Guo, Q., et al: ‘Distributed model predictive control of a wind farm for optimal active power control – part II’, IEEE Trans. Sust. Energy, 2015, 6, (3), pp. 840849.
    5. 5)
      • 11. Cai, Y., Lin, J., Song, Y., et al: ‘Model predictive control- based wind farm power control with energy storage’. Int. Conf. Power System Technolology, Chengdu, China, December 2014, pp. 26742679.
    6. 6)
      • 10. Kou, P., Liang, D., Gao, F., et al: ‘Coordinated predictive control of DFIG-based wind-battery hybrid systems: using non-Gaussian wind power predictive distributions’, IEEE Trans. Energy Conver., 2015, 30, (2), pp. 681695.
    7. 7)
      • 7. Teleke, S., Baran, M.E., Bhattacharya, S., et al: ‘Rule-based control of battery energy storage for dispatching intermittent renewable sources’, IEEE Trans. Sust. Energy, 2010, 1, (3), pp. 117124.
    8. 8)
      • 24. Barsali, S., Ceraolo, M.: ‘Dynamical models of lead-acid batteries: implementation issues’, IEEE Trans. Energy Convers, 2002, 17, (1), pp. 1623.
    9. 9)
      • 29. Bossanyi, E.A.: ‘GH bladed theory manual’ (GH & Partners Ltd, Bristol, UK, 11 edn.).
    10. 10)
      • 23. Jackey, R.A.: ‘A simple, effective lead-acid battery modeling process for electrical system component selection’, SAE Technical Paper, 2007.
    11. 11)
      • 19. Qiao, W.: ‘Dynamic modeling and control of doubly fed induction generators driven by wind turbines’. Power Systems Conf. and Exposition, Seattle, USA, March 2009, pp. 18.
    12. 12)
      • 18. Borhan, H., Rotea, M.A., Viassolo, D.: ‘Optimization-based power management of a wind farm with battery storage’, Wind Energy, 2013, 16, (8), pp. 11971211.
    13. 13)
      • 6. Zhao, H., Wu, Q., Guo, Q., et al: ‘Optimal active power control of a wind farm equipped with energy storage system based on distributed model predictive control’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 669677.
    14. 14)
      • 26. Liuping, W.: ‘Model predictive control system design and implementation using MATLAB’ (Springer Science & Business Media, London, UK, 2009, 1st edn.).
    15. 15)
      • 17. Sauer, D.U., Wenzl, H.: ‘Comparison of different approaches for lifetime prediction of electrochemical systems-using lead-acid batteries as example’, J. Power Sources, 2008, 176, (2), pp. 534546.
    16. 16)
      • 25. Schiffer, J., Sauer, D.U., Bindner, H., et al: ‘Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems’, J. Power Sources, 2007, 168, (1), pp. 6678.
    17. 17)
      • 20. Pena, R., Clare, J.C., Asher, G.M.: ‘Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation’, IEE Proc. Electr. Power Appl., 1996, 143, (3), pp. 231241.
    18. 18)
      • 2. Teleke, S., Baran, M.E., Bhattacharya, S., et al: ‘Optimal control of battery energy storage for wind farm dispatching’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 787794.
    19. 19)
      • 4. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), pp. 308332.
    20. 20)
      • 21. Ni, Y., Du, Z., Li, C., et al: ‘Cross-gramian-based dynamic equivalence of wind farms’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 14221430.
    21. 21)
      • 22. Ceraolo, M.: ‘New dynamical models of lead-acid batteries’, IEEE Trans. Power Syst., 2000, 15, (4), pp. 11841190.
    22. 22)
      • 14. Spudić, V., Baotić, M., Jelavić, M.: ‘Wind turbine power references in coordinated control of wind farms’, Automatika J. Control Meas. Electron. Comput. Commun., 2011, 52, (2), pp. 8294.
    23. 23)
      • 3. Chang-Chien, L.R., Sun, C.C., Yeh, Y.J.: ‘Modeling of wind farm participation in AGC’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 12041211.
    24. 24)
      • 13. Akhmatov, V.: ‘Analysis of dynamic behaviour of electric power systems with large amount of wind power’. PhD thesis, Technical University of Denmark, 2003.
    25. 25)
      • 15. Zhao, H., Wu, Q., Huang, S., et al: ‘Fatigue load sensitivity based optimal active power dispatch for wind farms’, IEEE Trans. Sust. Energy, 2017, 8, (3), pp. 12471259.
    26. 26)
      • 1. Wang, X.Y., Vilathgamuwa, D.M., Choi, S.S.: ‘Determination of battery storage capacity in energy buffer for wind farm’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 868878.
    27. 27)
      • 16. Aspragathos, N., Dimarogonas, A.D.: ‘Fatigue damage of turbine-generator shafts due to fast reclosing’, IEE Proc. C, 1982, 129, (1), pp. 19.
    28. 28)
      • 9. Khatamianfar, A., Khalid, M., Savkin, A.V., et al: ‘Improving wind farm dispatch in the Australian electricity market with battery energy storage using model predictive control’, IEEE Trans. Sust. Energy, 2013, 4, (3), pp. 745755.
    29. 29)
      • 31. ‘NWTC Information Portal (MCrunch)’. Available at https://nwtc.nrel.gov/MCrunch, accessed 14 December 2017.
    30. 30)
      • 12. Tan, J., Zhang, Y.: ‘Coordinated control strategy of a battery energy storage system to support a wind power plant providing multi-timescale frequency ancillary services’, IEEE Trans. Sust. Energy, 2017, 8, (3), pp. 11401153.
    31. 31)
      • 30. Bossanyi, E.A.: ‘Individual blade pitch control for load reduction’, Wind Energy, 2003, 6, (2), pp. 119128.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1497
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1497
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading