http://iet.metastore.ingenta.com
1887

Estimating electromechanical oscillation modes from synchrophasor measurements in bulk power grids using FSSI

Estimating electromechanical oscillation modes from synchrophasor measurements in bulk power grids using FSSI

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multi-order stochastic subspace identification (MOSSI) has been extensively used to estimate the electromechanical oscillation modes from probing, ambient and ringdown data. It has been validated with good performances, while the computational burden is still a major obstacle. This study develops a fast iterative MOSSI (FSSI) approach for computational enhancement of MOSSI in mode estimation. In the proposed approach, an initial cluster of eigenvalues is formulated through FSSI with repetitive calculations (RCs), and electromechanical oscillation mode separation (EOMS) is utilised to discriminate the electromechanical modes. The RCs within the FSSI is calculated through changing the model order successively over the defined range given by a mean of singular values based order determination strategy. Additionally, the proposed approach is highly reliable against prevalent measurement noises owing to RCs and the EOMS. The performance of the proposed method is evaluated in Kundur's two-area test system by comparing with MOSSI, Prony and autoregressive moving average exogenous. Its applicability for both the ringdown and ambient data is also demonstrated with the phasor measurement units field-measurement data from the China Southern Power Grid. The results confirmed the accuracy, robustness and efficiency of the proposed approach for oscillation mode estimation.

References

    1. 1)
      • 1. IEEE/CIGRE Joint Task Force on Stability Terms and Definitions: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 13871401.
    2. 2)
      • 2. Crow, M., Gibbard, M., Messina, A., et al: ‘Identification of electromechanical modes in power systems’, IEEE Technical Report, Task Force on Identification of Electromechanical modes, June 2012.
    3. 3)
      • 3. Kosterev, D.N., Taylor, C.W., Mittelstadt, W.A.: ‘Model validation for the August 10, 1996 WSCC system outage’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 967979.
    4. 4)
      • 4. Pourbeik, P., Kundur, P., Taylor, C.: ‘The anatomy of a power grid blackout – root causes and dynamics of recent major blackouts’, IEEE Power Energy Mag., 2006, 4, (5), pp. 2229.
    5. 5)
      • 5. Jiang, T., Yuan, H.Y., Jia, H.J., et al: ‘Stochastic subspace identification-based approach for tracking inter-area oscillatory modes in bulk power system utilizing synchrophasor measurements’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 24092418.
    6. 6)
      • 6. Jiang, T., Mu, Y., Jia, H., et al: ‘A novel dominant mode estimation method for analyzing inter-area oscillation in China southern power grid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25492560.
    7. 7)
      • 7. Zhou, N., Pierre, J.W., Trudnowski, D.: ‘A stepwise regression method for estimating dominant electromechanical modes’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 10511059.
    8. 8)
      • 8. Hauer, J.F., Demeure, C.J., Scharf, L.L.: ‘Initial results in Prony analysis of power system response signals’, IEEE Trans. Power Syst., 1990, 5, (1), pp. 8089.
    9. 9)
      • 9. Yazdanian, M., Mehrizi-Sani, A., Mojiri, M.: ‘Estimation of electromechanical oscillation parameters using an extended Kalman filter’, IEEE Trans. Power Syst., 2015, 39, (6), pp. 29943002.
    10. 10)
      • 10. Peng, J.C., Nair, N.C.: ‘Enhancing Kalman filter for tracking ringdown electromechanical oscillations’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 10421050.
    11. 11)
      • 11. Kamwa, I., Pradhan, A.K., Joós, G.: ‘Robust detection and analysis of power system oscillations using the Teager–Kaiser energy operator’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 323333.
    12. 12)
      • 12. Messina, A.R., Vittal, V.: ‘Extraction of dynamic patterns from wide-area measurements using empirical orthogonal functions’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 682692.
    13. 13)
      • 13. Rueda, J.L., Juárez, C.A., Erlich, I.: ‘Wavelet-based analysis of power system low-frequency electromechanical oscillations’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 17331743.
    14. 14)
      • 14. Hosseini, S.A., Amjady, N., Hossein, M.: ‘A Fourier based wavelet approach using Heisenberg's uncertainty principle and Shannon's entropy criterion to monitor power system small signal oscillations’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33143326.
    15. 15)
      • 15. Anderson, M.G., Zhou, N., Pierre, J.W., et al: ‘Bootstrap-based confidence interval estimates for electromechanical modes from multiple output analysis of measured ambient data’, IEEE Trans. Power Syst., 2015, 20, (2), pp. 943950.
    16. 16)
      • 16. Dosiek, L., Pierre, J.W.: ‘Estimating electromechanical modes and mode shapes using the multichannel ARMAX model’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19501959.
    17. 17)
      • 17. Zhou, N., Pierre, J.W., Trudnowski, D.J., et al: ‘Robust RLS methods for online estimation of power system electromechanical modes’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 12401249.
    18. 18)
      • 18. Zhou, N., Trudnowski, D.J., Pierre, J.W., et al: ‘Electromechanical mode online estimation using regularized robust RLS methods’, IEEE Trans. Power Syst., 2008, 23, (4), pp. 16701680.
    19. 19)
      • 19. Ghasemi, H., Canizares, C., Moshref, A.: ‘Oscillatory stability limit prediction using stochastic subspace identification’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 736745.
    20. 20)
      • 20. Ni, J., Shen, C., Liu, F.: ‘Estimation of the electromechanical characteristics of power systems based on a revised stochastic subspace method and the stabilization diagram’, Sci. China (Technol. Sci.), 2012, 55, (6), pp. 16771687.
    21. 21)
      • 21. Wu, T., Sarmadi, S.A.N., Venkatasubramanian, V., et al: ‘Fast SVD computations for synchrophasor algorithms’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 16511652.
    22. 22)
      • 22. Nezam Sarmadi, S.A., Venkatasubramanian, V.: ‘Electromechanical mode estimation using recursive adaptive stochastic subspace identification’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 349358.
    23. 23)
      • 23. Turunen, J.: ‘A wavelet-based method for estimating damping in power systems’, PhD dissertation, Department of Electrical Engineering, Aalto University, Espoo, Finland, 2011.
    24. 24)
      • 24. Khalilinia, H., Venkatasubramanian, V.: ‘Modal analysis of ambient PMU measurements using orthogonal wavelet bases’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 29542963.
    25. 25)
      • 25. Khalilinia, H., Zhang, L., Venkatasubramanian, V.: ‘Modal analysis of ambient PMU measurements using orthogonal wavelet bases’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 16311633.
    26. 26)
      • 26. Khalilinia, H., Venkatasubramanian, V.: ‘Recursive frequency domain decomposition for multidimensional ambient modal estimation’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 822823.
    27. 27)
      • 27. Zhou, N., Pierre, J.W., Hauer, J.F.: ‘Initial results in power system identification from injected probing signals using a subspace method’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 12961302.
    28. 28)
      • 28. Jiang, T., Jia, H.J., Zhao, J.L., et al: ‘Mode matching pursuit for estimating dominant modes in bulk power grid’, IET Gener. Transm. Distrib., 2014, 8, (10), pp. 16771686.
    29. 29)
      • 29. Katayama, T.: ‘Subspace methods for system identification’ (Springer, London, 2005).
    30. 30)
      • 30. Duhler, M., Mevel, L.: ‘Fast multi-order stochastic subspace identification’. IFAC Proc. Volumes, January 2011, Volume44, no. 1, pp. 65236528.
    31. 31)
      • 31. Rogers, G.: ‘Power systems oscillations’ (Kluwer, Norwell, MA, 2000).
    32. 32)
      • 32. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, NY, USA, 1994).
    33. 33)
      • 33. Jiang, T., Bai, L.Q, Li, G.Q., et al: ‘Estimating inter-area dominant oscillation mode in bulk power grid using multi-channel continuous wavelet transform’, J. Mod. Power Syst. Clean Energy, 2016, 4, (3), pp. 394405.
    34. 34)
      • 34. Jiang, T., Jia, H., Yuan, H., et al: ‘Projection pursuit: a general methodology of wide-area coherency detection in bulk power grid’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 27762786.
    35. 35)
      • 35. CSG Dispatching and Control Center: ‘Operation mode of CSG in 2013’, Report, China Southern Power Grid, Guangzhou, China, 2013, pp. 124132.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1492
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address