© The Institution of Engineering and Technology
Voltage regulation (VR) and energy loss minimisation have always been major concerns for distribution network (DN) operators, thereby many conventional VR schemes are dedicatedly employed in existing DNs. In this study, optimal integration of different distributed energy resources (DERs) is investigated in coordination with existing VR scheme, i.e. onload tapchanger. To show the superiority of the proposed DER integration model, optimal allocations of different DERs are determined with and without considering the coordinated effect of existing VR schemes for annual energy loss minimisation under different scenarios. To solve this complex optimisation problem, the improved genetic algorithm (GA) is adopted. A dynamic node priority list (DNPL) is suggested to further improve the performance of GA. To validate the proposed strategy and DNPL, the DER integration problem is solved for benchmark 33bus and reallife 108bus Indian radial distribution systems. The simulation results are found to be inspiring when compared with the existing optimisation techniques and DER integration models without considering VR schemes.
References


1)

1. Georgilakis, P.S., Hatziargyriou, N.D.: ‘Optimal distributed generation placement in power distribution networks: models, methods, and future research’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 3420–3428.

2)

2. Naik, S.N.G., Khatod, D.K., Sharma, M.P.: ‘Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks’, IET Gener. Trans. Distrib., 2015, 9, (3), pp. 209–220.

3)

3. Hung, D.Q., Mithulananthan, N.: ‘Multiple distributed generator placement in primary distribution networks for loss reduction’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 1700–1708.

4)

4. Abri, R.S.A., ElSaadany, E.F., Atwa, Y.M.: ‘Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 326–334.

5)

5. Mahmoud, K., Yorino, N., Ahmed, A.: ‘Optimal distributed generation allocation in distribution systems for loss minimization’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 960–969.

6)

6. Elsaiah, S., Benidris, M., Mitra, J.: ‘Analytical approach for placement and sizing of distributed generation on distribution systems’, IET Gener. Trans. Distrib., 2014, 8, (6), pp. 1039–1049.

7)

7. Capitanescu, F., Ochoa, L.F., Margossian, H., et al: ‘Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 346–356.

8)

8. Esmaili, M.: ‘Placement of minimum distributed generation units observing power losses and voltage stability with network constraints’, IET Gener. Trans. Distrib., 2013, 7, (8), pp. 813–821.

9)

9. Meena, N.K., Swarnkar, A., Gupta, N., et al: ‘A Taguchibased approach for optimal placement of distributed generations for power loss minimization in distribution system’. 2015 IEEE Power Energy Society General Meeting, July 2015, pp. 1–5.

10)

10. Meena, N.K., Swarnkar, A., Gupta, N., et al: ‘Multiobjective Taguchi approach for optimal DG integration in distribution systems’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 2418–2428.

11)

11. Zhu, D., Broadwater, R.P., Tam, K.S., et al: ‘Impact of DG placement on reliability and efficiency with timevarying loads’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 419–427.

12)

12. Moradi, M.H., Abedini, M.: ‘A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems’, Int. J. Electr. Power Energy Syst., 2012, 34, (1), pp. 66–74.

13)

13. Rao, R.S., Ravindra, K., Satish, K., et al: ‘Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 317–325.

14)

14. Kanwar, N., Gupta, N., Niazi, K., et al: ‘Simultaneous allocation of distributed resources using improved teaching learning based optimization’, Energy Convers. Manage., 2015, 103, pp. 387–400.

15)

15. Nekooei, K., Farsangi, M.M., NezamabadiPour, H., et al: ‘An improved multiobjective harmony search for optimal placement of DGs in distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 557–567.

16)

16. de Souza, B.A., de Almeida, A.M.F.: ‘Multiobjective optimization and fuzzy logic applied to planning of the volt/var problem in distributions systems’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 1274–1281.

17)

17. Park, J.Y., Sohn, J.M., Park, J.K.: ‘Optimal capacitor allocation in a distribution system considering operation costs’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 462–468.

18)

18. Imran, A.M., Kowsalya, M., Kothari, D.: ‘A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 461–472.

19)

19. Meena, N.K., Parashar, S., Swarnkar, A., et al: ‘Improved elephant herding optimization for multiobjective DER accommodation in distribution systems’, IEEE Trans. Ind. Inf., 2017, PP, (99), pp. 1–1, .

20)

20. Wang, L., Singh, C.: ‘Reliabilityconstrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm’, IEEE Trans. Syst. Man Cybern. C (Appl. Rev.), 2008, 38, (6), pp. 757–764.

21)

21. AbuMouti, F.S., ElHawary, M.E.: ‘Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 2090–2101.

22)

22. Abdelaziz, A.Y., Hegazy, Y.G., ElKhattam, W., et al: ‘A multiobjective optimization for sizing and placement of voltagecontrolled distributed generation using supervised big bang–big crunch method’, Electr. Power Compon. Syst., 2015, 43, (1), pp. 105–117.

23)

23. Bohre, A.K., Agnihotri, G., Dubey, M.: ‘Optimal sizing and sitting of DG with load models using soft computing techniques in practical distribution system’, IET Gener. Trans. Distrib., 2016, 10, (11), pp. 2606–2621.

24)

24. ElZonkoly, A.M.: ‘Optimal placement of multidistributed generation units including different load models using particle swarm optimisation’, IET Gener., Trans. Distrib., 2011, 5, (7), pp. 760–771.

25)

25. Vatani, M., Alkaran, D.S., Sanjari, M.J., et al: ‘Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods’, IET Gener. Trans. Distrib., 2016, 10, (1), pp. 66–72.

26)

26. Abbasi, F., Hosseini, S.M.: ‘Optimal DG allocation and sizing in presence of storage systems considering network configuration effects in distribution systems’, IET Gener. Trans. Distrib., 2016, 10, (3), pp. 617–624.

27)

27. Favuzza, S., Graditi, G., Ippolito, M.G., et al: ‘Optimal electrical distribution systems reinforcement planning using gas micro turbines by dynamic ant colony search algorithm’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 580–587.

28)

28. Rahmaniandebili, M.: ‘Distributed generation placement planning modeling feeder's failure rate and customer's load type’, IEEE Trans. Ind. Electron., 2016, 63, (3), pp. 1598–1606.

29)

29. Parisio, A., Wiezorek, C., Kyntäjä, T., et al: ‘Cooperative MPCbased energy management for networked microgrids’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 3066–3074.

30)

30. Sha'aban, Y.A., Ikpehai, A., Adebisi, B., et al: ‘Bidirectional coordination of plugin electric vehicles with economic model predictive control’, Energies, 2017, 10, (10), pp. 1507.

31)

31. Sultana, S., Roy, P.K.: ‘Multiobjective quasioppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 534–545.

32)

32. Muttaqi, K.M., Le, A.D.T., Negnevitsky, M., et al: ‘A novel tuning method for advanced line drop compensator and its application to response coordination of distributed generation with voltage regulating devices’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 1842–1854.

33)

33. Swarnkar, A., Gupta, N., Niazi, K.R.: ‘A novel codification for metaheuristic techniques used in distribution network reconfiguration’, Electr. Power Syst. Res., 2011, 81, (7), pp. 1619–1626.

34)

34. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 1401–1407.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2017.1403
Related content
content/journals/10.1049/ietgtd.2017.1403
pub_keyword,iet_inspecKeyword,pub_concept
6
6