Understanding DC-side high-frequency resonance in MMC-HVDC system

Understanding DC-side high-frequency resonance in MMC-HVDC system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Instability on direct-current (DC)-side resonance occurs if the connected converters interact with the DC network. In this study, a single-input–single-output transfer function is built to investigate the DC-side resonance of modular multilevel converter-based high-voltage DC (MMC-HVDC) system. The small signal model is developed for the DC-side resonance of an MMC-HVDC system. Furthermore, the system can be separated into two subsystems, i.e. H(s) and G(s). This study shows that both amplitudes of H(s), i.e. Abs [H(s)] and resonance peak of G(s) affect the encirclement radius of the Nyquist curve, and the encirclement radius reaches the largest at the resonance frequency. More importantly, the power transfer capability is restricted by the DC-side resonance since the more transmitted power leads to larger Abs [H(s)]. The impedance model is verified by both time-domain simulations and frequency responses imposed by impedance frequency scan in power systems computer-aided design/electro-magnetic transient design and control. Besides, an active damping control approach is introduced to suppress the resonance on DC side.


    1. 1)
      • 1. Zhang, S., Jiang, S., Lu, X., et al: ‘Resonance issues and damping techniques for grid-connected inverters with long transmission cable’, IEEE Trans. Power. Electron., 2014, 29, (1), pp. 110120.
    2. 2)
      • 2. Egwebe, A.M., Fazeli, M., Igic, P., et al: ‘Implementation and stability study of dynamic droop in islanded microgrids’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 821832.
    3. 3)
      • 3. Hamzeh, M., Ghafouri, M., Karimi, H., et al: ‘Power oscillations damping in DC microgrids’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 970980.
    4. 4)
      • 4. Wang, W., Beddard, A., Barnes, M., et al: ‘Analysis of active power control for VSC–HVDC’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 19781988.
    5. 5)
      • 5. Wang, W., Barnes, M., Marjanovic, O., et al: ‘Impact of DC breaker systems on multiterminal VSC-HVDC stability’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 769779.
    6. 6)
      • 6. Magne, P., Mobarakeh, B.N., Pierfederici, S.: ‘Dynamic consideration of DC microgrids with constant power loads and active damping system – a design method for fault-tolerant stabilizing system’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (3), pp. 562570.
    7. 7)
      • 7. Bottrell, N., Prodanovic, M., Green, T.C.: ‘Dynamic stability of a microgrid with an active load’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 51075119.
    8. 8)
      • 8. Riccobono, A., Santi, E.: ‘Comprehensive review of stability criteria for DC power distribution systems’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 35253535.
    9. 9)
      • 9. Tahim, A.P.N, Pagano, D.J., Lenz, E., et al: ‘Modeling and stability analysis of islanded DC microgrids under droop control’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 45974607.
    10. 10)
      • 10. Anand, S., Fernandes, B.G.: ‘Reduced-order model and stability analysis of low voltage DC microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 50405049.
    11. 11)
      • 11. Lu, X., Sun, K., Guerrero, J.M., et al: ‘Stability enhancement based on virtual impedance for DC microgrids with constant power loads’, IEEE Trans. Smart Grid., 2015, 6, (6), pp. 27702783.
    12. 12)
      • 12. Kalcon, G.O., Adam, G.P., Lara, O.A., et al: ‘Small-signal stability analysis of multi-terminal VSC-based DC transmission systems’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18181830.
    13. 13)
      • 13. Thams, F., Suul, J.A., D'Arco, S., et al: ‘Stability of DC voltage droop controllers in VSC-HVDC systems’. Power Tech, Eindhoven 2015, Eindhoven, 2015.
    14. 14)
      • 14. Xu, L., Fan, L., Miao, Z.: ‘DC impedance-model based resonance analysis of a VSC–HVDC system’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 12211230.
    15. 15)
      • 15. Shi, X., Wang, Z., Liu, B., et al: ‘DC impedance modeling of a MMC-HVDC system for DC voltage ripple prediction under a single-line-to-ground fault’. Proc. 2014 IEEE Energy Conversion Congress and Exposition, September 2014, pp. 53395346.
    16. 16)
      • 16. Saad, H., Dennetière, S., Mahseredjian, J., et al: ‘Modular multilevel converter models for electromagnetic transients’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14811489.
    17. 17)
      • 17. Beerten, J., D'Arco, S., Suul, J.A.: ‘Frequency-dependent cable modeling for small-signal stability analysis of VSC-HVDC systems’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13701381.
    18. 18)
      • 18. Yang, H., Dong, Y., Li, W., et al: ‘Average-value model of modular multilevel converters considering capacitor voltage ripple’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 723732.
    19. 19)
      • 19. Xu, J., Gole, A.M., Zhao, C.: ‘The use of averaged-value model of modular multilevel converter in DC grid’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 519528.
    20. 20)
      • 20. Li, Y., Tang, G., Ge, J., et al: ‘Modeling and damping control of modular multilevel converter based DC grid’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 723735.
    21. 21)
      • 21. inares, G.P.: ‘Analysis of the dc dynamics of VSC-HVDC systems connected to weak ac grids using a frequency domain approach’. Presented at the Power Systems Computers Conf., 2014.
    22. 22)
      • 22. Araujo, E.P., Alvarez, A.E., Fekriasl, S., et al: ‘DC voltage droop control design for multi-terminal HVDC systems considering AC and DC grid dynamics’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 575585.
    23. 23)
      • 23. Song, Q., Liu, W., Li, X., et al: ‘A steady-state analysis method for a modular multilevel converter’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 37023713.
    24. 24)
      • 24. Harnefors, L., Antonopoulos, A., Norrga, S., et al: ‘Dynamic analysis of modular multilevel converters’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 25262537.
    25. 25)
      • 25. Mehrasa, M., Pouresmaeil, E., Zabihi, S., et al: ‘Dynamic model, control and stability analysis of MMC in HVDC transmission systems’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 14711482.
    26. 26)
      • 26. Harnefors, L.: ‘Model-based current control of ac machine using the internal model control method’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 133141.
    27. 27)
      • 27. Zhang, L.: ‘Modeling and control of VSC-HVDC links connected to weak ac systems’, PhD dissertation, School Electrical Engineering, Royal Institute Technology, Stockholm, Sweden, April 2010.
    28. 28)
      • 28. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘A generalized descriptor-system robust H control of autonomous microgrids to improve small and large signal stability considering communication delays and load nonlinearities’, Int. J. Electr. Power Energy Syst., 2017, 92, (1), pp. 6382, doi: 10.1016/j.ijepes.2017.04.007.

Related content

This is a required field
Please enter a valid email address