Modelling and estimation of gear train backlash present in wind turbine driven DFIG system

Modelling and estimation of gear train backlash present in wind turbine driven DFIG system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The backlash, which is always present in the gears of drive-trains to enable smooth operation, may increase with time due to the wear and tear during mechanical power transmission. Accurate knowledge of the amount of backlash non-linearity is required in such systems for monitoring control applications as well as developing maintenance strategies. In this study, the modelling and online estimation of the backlash existing in the gear train of wind turbine driven doubly fed induction generator (DFIG) systems is presented. The estimation has been performed using the unscented Kalman filter considering the backlash as a parameter and augmenting it as a state into the dynamics. Local measurements of the DFIG system have been used to estimate the backlash. The performance and efficacy of the method have been investigated in different scenarios viz. system parameters, noise levels of the measurements and operating points of the DFIG system. The estimation has also been performed in an environment of the time-varying wind, modelled by Van der Hoven's spectral model. The estimation has been enabled by the bad-data detection and examined in the presence of unknown mechanical parameters of the shaft.


    1. 1)
      • 1. Siyu, C., Jinyuan, T., Caiwang, L., et al: ‘Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction’, Mech. Mach. Theory, 2011, 46, pp. 466478.
    2. 2)
      • 2. Ghasemi, S., Tabesh, A., Askari-Marnani, J.: ‘Application of fractional calculus theory to robust controller design for wind turbine generators’, IEEE Trans. Energy Convers., 2014, 29, (3), pp. 780787.
    3. 3)
      • 3. Pai, M.A., Sen Gupta, D.P., Padiyar, K.R., et al: ‘Small signal analysis of integrated power systems’ (Narosa Publishing House, Delhi, 2016).
    4. 4)
      • 4. Anaya-Lara, O., Jenkins, N., Ekanayake, J., et al: ‘Wind energy generation: modelling and control’ (John Wiley and Sons Ltd, England, 2009).
    5. 5)
      • 5. Prajapat, G.P., Senroy, N., Kar, I.N.: ‘Eigenvalue sensitivity analysis based optimized control of wind energy conversion systems’. IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia), Melbourne, VIC, 2016, pp. 647652.
    6. 6)
      • 6. Tapia, A., Tapia, G., Ostolaza, J. X., et al: ‘Modeling and control of a wind turbine driven doubly fed induction generator’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 194204.
    7. 7)
      • 7. Lei, Y., Mullane, A., Lightbody, G., et al: ‘Modeling of the wind turbine with a doubly fed induction generator for grid integration studies’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 257264.
    8. 8)
      • 8. Prajapat, G.P., Senroy, N., Kar, I.N.: ‘Small signal stability improvement of a grid connected DFIG through quadratic regulator’. 2016 IEEE 6th Int. Conf. on Power Systems (ICPS), New Delhi, March 2016, pp. 16.
    9. 9)
      • 9. Prajapat, G.P., Senroy, N., Kar, I.N.: ‘Wind turbine structural modeling consideration for dynamic studies of DFIG based system’, IEEE Trans. Sustain. Energy, 2017, 8, (9), pp. 14631472.
    10. 10)
      • 10. Mei, F., Pal, B.C.: ‘Modeling and small-signal analysis of a grid connected doubly-fed induction generator’. IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, June 2005, vol. 3, pp. 21012108.
    11. 11)
      • 11. Mei, F., Pal, B.: ‘Modal analysis of grid-connected doubly fed induction generators’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 728736.
    12. 12)
      • 12. Ghosh, S., Senroy, N.: ‘Electromechanical dynamics of controlled variable-speed wind turbines’, IEEE Syst. J., 2015, 9, (2), pp. 639646.
    13. 13)
      • 13. Muyeen, S.M., Hasan Ali, Md, Takahashi, R., et al: ‘Comparative study on transient stability analysis of wind turbine generator system using different drive train models’, IET Renew. Power Gener., 2007, 1, (2), pp. 131141.
    14. 14)
      • 14. Nordin, M., Gutman, P.O.: ‘Controlling mechanical systems with backlash – a survey’, Automatica, 2002, 38, (10), pp. 16331649.
    15. 15)
      • 15. Lagerberg, A., Egardt, B.: ‘Backlash estimation with application to automotive powertrains’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 483493.
    16. 16)
      • 16. Nordin, M., Galic, J., Gutman, P.O.: ‘New models for backlash and gear play’, Int. J. Adapt. Control Signal Process., 1997, 11, (1), pp. 4963.
    17. 17)
      • 17. Kyriakides, E., Heydt, G.T., Vittal, V.: ‘On-line estimation of synchronous generator parameters using a damper current observer and a graphic user interface’, IEEE Trans. Energy Convers., 2004, 19, (3), pp. 499507.
    18. 18)
      • 18. Lalami, A., Wamkeue, R., Kamwa, I., et al: ‘Unscented Kalman filter for non-linear estimation of induction machine parameters’, IET Electric Power Appl., 2012, 6, (9), pp. 611620.
    19. 19)
      • 19. Valverde, G., Kyriakides, E., Heydt, G.T., et al: ‘Nonlinear estimation of synchronous machine parameters using operating data’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 831839.
    20. 20)
      • 20. Ghahremani, E., Kamwa, I.: ‘Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units’, IEEE Trans. Energy Convers., 2011, 26, (4), pp. 10991108.
    21. 21)
      • 21. Wan, E.A., Van Der Merwe, R.: ‘The unscented Kalman filter for nonlinear estimation’. Proc. IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symp., Lake Louise, Alta, 2000, pp. 153158.
    22. 22)
      • 22. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    23. 23)
      • 23. Yu, S., Fernando, T., Emami, K., et al: ‘Dynamic state estimation based control strategy for DFIG wind turbine connected to complex power systems’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 12721281.
    24. 24)
      • 24. Li, L., Xia, Y.: ‘Stochastic stability of the unscented Kalman filter with intermittent observations’, Automatica, 2012, 48, (5), pp. 978981.
    25. 25)
      • 25. Salman, S.K., Teo, A.L.J.: ‘Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 793802.
    26. 26)
      • 26. Nichita, C., Luca, D., Dakyo, B., et al: ‘Large band simulation of the wind speed for real time wind turbine simulators’, IEEE Trans. Energy Convers., 2002, 17, (4), pp. 523529.
    27. 27)
      • 27. Ultrasonic Anemometers: Available at, accessed on 19 December 2017.
    28. 28)
      • 28. Singh, A.K., Pal, B.C.: ‘Decentralized dynamic state estimation in power systems using unscented transformation’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 794804.
    29. 29)
      • 29. Zhou, T.: ‘On the convergence and stability of a robust state estimator’, IEEE Trans. Automatic Control, 2010, 55, (3), pp. 708714.
    30. 30)
      • 30. Li, W., Wei, G., Han, F., et al: ‘Weighted average consensus-based unscented Kalman filtering’, IEEE Trans. Cybernetics, 2016, 46, (2), pp. 558567.
    31. 31)
      • 31. Xiong, K., Zhang, H.Y., Chan, C.W.: ‘Performance evaluation of UKF-based nonlinear filtering’, Automatica, 2006, 42, (2), pp. 261270.
    32. 32)
      • 32. Reif, K., Gunther, S., Yaz, E., et al: ‘Stochastic stability of the discrete-time extended Kalman filter’, IEEE Trans. Automatic Control, 1999, 44, (4), pp. 714728.

Related content

This is a required field
Please enter a valid email address