© The Institution of Engineering and Technology
A coordinated lookahead reactive power optimisation method is proposed to minimise the required number of operating control devices for a time horizon of 24 h. The aim is to determine, via solving a mixed integer nonlinear programming (MINLP) problem, optimum value settings of transformer taps, capacitor banks and reactive power output of distributed generators (DGs) based on the dayahead load demand and active power output of DGs satisfying the engineering and operational constraints. The proposed method employs a threestage method: assessment stage, timeperiodpartitioning stage, and coordinated reactive power optimisation stage. The first stage assesses the hourly voltage profile and available delivery capability margin of the system, while the timeperiodpartitioning stage uses clustering algorithm based on powerflow solution to partition time periods into coherent time durations. The MINLP problem is solved in the proposed coordinated optimisation stage. A modified IEEE13 case and IEEE123 case are used to verify the effectiveness of the proposed threestage method.
References


1)

1. Tinney, W.F., Bright, J.M., Demaree, K.D., et al: ‘Some deficiencies in optimal power flow’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 676–683.

2)

2. Capitanescu, F., Wehenkel, L.: ‘Optimal power flow computations with a limited number of controls allowed to move’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 586–587.

3)

3. Zeng, L., Chiang, H.D.: ‘Toward an online minimum number of controls for relieving overloads’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 1882–1890.

4)

4. Zhang, Y., Ren, Z.: ‘Optimal reactive power dispatch considering costs of adjusting the control devices’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 1349–1356.

5)

5. Lu, F.C., Hsu, Y.Y.: ‘Reactive power/voltage control in a distribution substation using dynamic programming’, IEE Proc., Gener. Transm. Distrib., 1995, 142, (6), pp. 639–645.

6)

6. Liang, R., Cheng, C.: ‘Dispatch of main transformer ULTC and capacitors in a distribution system’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 625–630.

7)

7. Hu, Z., Wang, X., Chen, H., et al: ‘Volt/VAr control in distribution systems using a timeinterval based approach’, IEE Proc., Gener. Transm. Distrib., 2003, 150, (5), pp. 548–554.

8)

8. Deng, Y., Ren, X., Zhao, C., et al: ‘A heuristic and algorithmic combined approach for reactive power optimisation with timevarying load demand in distribution systems’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 1068–1072.

9)

9. Liu, M.B., Canizares, C.A., Huang, W.: ‘Reactive power and voltage control in distribution systems with limited switching operations’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 889–899.

10)

10. Chen, S., Hu, W., Su, C., et al: ‘Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 1096–1103.

11)

11. Carli, R., Cavraro, G.: ‘Algorithms for voltage control in distribution networks’. 2015 IEEE Int. Conf. Smart Grid Communications (SmartGridComm), Miami, FL, 2015, pp. 737–742.

12)

12. Chiang, H.D., Sheng, H.: ‘Available delivery capability of general distribution networks with renewables: formulations and solutions’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 898–905.

13)

13. Liu, J., Chiang, H.D.: ‘Maximizing available delivery capability of unbalanced distribution networks for high penetration of distributed generators’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 1196–1202.

14)

14. Tare, R.S., Bijwe, P.R.: ‘Lookahead approach to power system loadability enhancement’, IEE Proc., Gener Transm. Distrib., 1997, 144, (4), pp. 357–362.

15)

15. Chen, Y.L.: ‘Weak bus oriented reactive power planning for system security’, IEE Proc., Gener. Transm. Distrib., 1996, 143, (6), pp. 541–545.

16)

16. Duman, S., Sonmez, Y., Guvenc, U., et al: ‘Optimal reactive power dispatch using a gravitational search algorithm’, IET Gener. Transm. Distrib., 2012, 6, (6), pp. 563–576.

17)

17. Rabiee, A., Parniani, M.: ‘Voltage security constrained multiperiod optimal reactive power flow using benders and optimality condition decompositions’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 696–708.

18)

18. KaramiHorestani, A., Hamedani Golshan, M.E., Monsef, H.: ‘Expected security constrained reactive power planning’, IET Gener. Transm. Distrib., 2016, 10, (10), pp. 2306–2315.

19)

19. Lin, X., David, A.K., Yu, C.W.: ‘Reactive power optimisation with voltage stability consideration in power market systems’, IEE Proc., Gener. Transm. Distrib., 2003, 150, (3), pp. 305–310.

20)

20. Chiang, H.D., Jiang, C.Y.: ‘Feasible region of optimal power flow: characterization and applications’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 236–244.

21)

21. Frey, B.J., Dueck, D.: ‘Clustering by passing messages between data points’, Science, 2007, 315, (5814), pp. 972–976.

22)

22. Sheng, H., Chiang, H.D.: ‘CDFLOW: a practical tool for tracing stationary behaviors of general distribution networks’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 1365–1371.

23)

23. Saaty, T.L.: ‘How to make a decision: the analysis hierarchy process’, Interfaces, 1994, 24, (6), pp. 19–43.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2017.1367
Related content
content/journals/10.1049/ietgtd.2017.1367
pub_keyword,iet_inspecKeyword,pub_concept
6
6