http://iet.metastore.ingenta.com
1887

Toward coordinated look-ahead reactive power optimisation for distribution networks with minimal control

Toward coordinated look-ahead reactive power optimisation for distribution networks with minimal control

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A coordinated look-ahead reactive power optimisation method is proposed to minimise the required number of operating control devices for a time horizon of 24 h. The aim is to determine, via solving a mixed integer non-linear programming (MINLP) problem, optimum value settings of transformer taps, capacitor banks and reactive power output of distributed generators (DGs) based on the day-ahead load demand and active power output of DGs satisfying the engineering and operational constraints. The proposed method employs a three-stage method: assessment stage, time-period-partitioning stage, and coordinated reactive power optimisation stage. The first stage assesses the hourly voltage profile and available delivery capability margin of the system, while the time-period-partitioning stage uses clustering algorithm based on power-flow solution to partition time periods into coherent time durations. The MINLP problem is solved in the proposed coordinated optimisation stage. A modified IEEE13 case and IEEE123 case are used to verify the effectiveness of the proposed three-stage method.

References

    1. 1)
      • 1. Tinney, W.F., Bright, J.M., Demaree, K.D., et al: ‘Some deficiencies in optimal power flow’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 676683.
    2. 2)
      • 2. Capitanescu, F., Wehenkel, L.: ‘Optimal power flow computations with a limited number of controls allowed to move’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 586587.
    3. 3)
      • 3. Zeng, L., Chiang, H.D.: ‘Toward an online minimum number of controls for relieving overloads’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 18821890.
    4. 4)
      • 4. Zhang, Y., Ren, Z.: ‘Optimal reactive power dispatch considering costs of adjusting the control devices’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 13491356.
    5. 5)
      • 5. Lu, F.C., Hsu, Y.Y.: ‘Reactive power/voltage control in a distribution substation using dynamic programming’, IEE Proc., Gener. Transm. Distrib., 1995, 142, (6), pp. 639645.
    6. 6)
      • 6. Liang, R., Cheng, C.: ‘Dispatch of main transformer ULTC and capacitors in a distribution system’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 625630.
    7. 7)
      • 7. Hu, Z., Wang, X., Chen, H., et al: ‘Volt/VAr control in distribution systems using a time-interval based approach’, IEE Proc., Gener. Transm. Distrib., 2003, 150, (5), pp. 548554.
    8. 8)
      • 8. Deng, Y., Ren, X., Zhao, C., et al: ‘A heuristic and algorithmic combined approach for reactive power optimisation with time-varying load demand in distribution systems’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 10681072.
    9. 9)
      • 9. Liu, M.B., Canizares, C.A., Huang, W.: ‘Reactive power and voltage control in distribution systems with limited switching operations’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 889899.
    10. 10)
      • 10. Chen, S., Hu, W., Su, C., et al: ‘Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 10961103.
    11. 11)
      • 11. Carli, R., Cavraro, G.: ‘Algorithms for voltage control in distribution networks’. 2015 IEEE Int. Conf. Smart Grid Communications (SmartGridComm), Miami, FL, 2015, pp. 737742.
    12. 12)
      • 12. Chiang, H.D., Sheng, H.: ‘Available delivery capability of general distribution networks with renewables: formulations and solutions’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 898905.
    13. 13)
      • 13. Liu, J., Chiang, H.D.: ‘Maximizing available delivery capability of unbalanced distribution networks for high penetration of distributed generators’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 11961202.
    14. 14)
      • 14. Tare, R.S., Bijwe, P.R.: ‘Look-ahead approach to power system loadability enhancement’, IEE Proc., Gener Transm. Distrib., 1997, 144, (4), pp. 357362.
    15. 15)
      • 15. Chen, Y.L.: ‘Weak bus oriented reactive power planning for system security’, IEE Proc., Gener. Transm. Distrib., 1996, 143, (6), pp. 541545.
    16. 16)
      • 16. Duman, S., Sonmez, Y., Guvenc, U., et al: ‘Optimal reactive power dispatch using a gravitational search algorithm’, IET Gener. Transm. Distrib., 2012, 6, (6), pp. 563576.
    17. 17)
      • 17. Rabiee, A., Parniani, M.: ‘Voltage security constrained multi-period optimal reactive power flow using benders and optimality condition decompositions’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 696708.
    18. 18)
      • 18. Karami-Horestani, A., Hamedani Golshan, M.E., Monsef, H.: ‘Expected security constrained reactive power planning’, IET Gener. Transm. Distrib., 2016, 10, (10), pp. 23062315.
    19. 19)
      • 19. Lin, X., David, A.K., Yu, C.W.: ‘Reactive power optimisation with voltage stability consideration in power market systems’, IEE Proc., Gener. Transm. Distrib., 2003, 150, (3), pp. 305310.
    20. 20)
      • 20. Chiang, H.D., Jiang, C.Y.: ‘Feasible region of optimal power flow: characterization and applications’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 236244.
    21. 21)
      • 21. Frey, B.J., Dueck, D.: ‘Clustering by passing messages between data points’, Science, 2007, 315, (5814), pp. 972976.
    22. 22)
      • 22. Sheng, H., Chiang, H.D.: ‘CDFLOW: a practical tool for tracing stationary behaviors of general distribution networks’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 13651371.
    23. 23)
      • 23. Saaty, T.L.: ‘How to make a decision: the analysis hierarchy process’, Interfaces, 1994, 24, (6), pp. 1943.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1367
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1367
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address