Error reduction of phasor measurement unit data considering practical constraints

Error reduction of phasor measurement unit data considering practical constraints

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wide area measurement system relies on phasor measurement unit (PMU) data to monitor, protect, and control high-voltage transmission networks. However, errors in instrument transformers (ITs) located at the inputs of a PMU can significantly degrade its output quality. This study proposes two methodologies for voltage and current transformers calibration using PMU data. The first method calibrates ITs using one good quality voltage measurement located at a tie-line. This method tolerates errors in both the ITs (which are to be estimated) as well as the PMUs. The second method attains the same objective as the first one, with the additional constraint that some portion of the data is unusable. Thus, the second method can be used even when the incoming data is intermittent.


    1. 1)
      • 1. Li, X., Scaglione, A., Hui, T.H.: ‘A framework for phasor measurement placement in hybrid state estimation via Gauss–Newton’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 824832.
    2. 2)
      • 2. Chakhchoukh, Y., Vittal, V., Heydt, G.T.: ‘PMU based state estimation by integrating correlation’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 617626.
    3. 3)
      • 3. Gol, M., Abur, A.: ‘A robust PMU based three-phase state estimator using modal decoupling’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 22922299.
    4. 4)
      • 4. Jones, K.D., Thorp, J.S., Gardner, R.M.: ‘Three-phase linear state estimation using phasor measurements’. Proc. IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013, pp. 15.
    5. 5)
      • 5. Kaci, A., Kamwa, I., Dessaint, L.A., et al: ‘Synchrophasor data base-lining and mining for online monitoring of dynamic security limits’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 26812695.
    6. 6)
      • 6. Pal, A., Singh, I., Bhargava, B.: ‘Stress assessment in power systems and its visualization using synchrophasor based metrics’. Proc. IEEE 2014 North American Power Symp. (NAPS), Pullman, WA, 7–9 September 2014, pp. 16.
    7. 7)
      • 7. Liu, C., Sun, K., Rather, Z.H., et al: ‘A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 717730.
    8. 8)
      • 8. Bernabeu, E.E., Thorp, J.S., Centeno, V.A.: ‘Methodology for a security/dependability adaptive protection scheme based on data mining’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 104111.
    9. 9)
      • 9. Pal, A., Thorp, J.S., Veda, S.S., et al: ‘Applying a robust control technique to damp low frequency oscillations in the WECC’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 638645.
    10. 10)
      • 10. Mishra, C., Pal, A., Centeno, V.A.: ‘Kalman-filter based recursive regression for three-phase line parameter estimation using phasor measurements’. Proc. IEEE Power Energy Society General Meeting, Denver, CO, 26–30 July 2015, pp. 15.
    11. 11)
      • 11. Jones, K.D., Pal, A., Thorp, J.S.: ‘Methodology for performing synchrophasor data conditioning and validation’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11211130.
    12. 12)
      • 12. Huang, Z., Du, P., Kosterev, D., et al: ‘Generator dynamic model validation and parameter calibration using phasor measurements at the point of connection’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19391949.
    13. 13)
      • 13. Hajnoroozi, A.A., Aminifar, F., Ayoubzadeh, H.: ‘Generating unit model validation and calibration through synchrophasor measurements’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 441449.
    14. 14)
      • 14. Zoltan, I.: ‘Impedance synthesis [instrument transformer calibration]’. Proc. 18th IEEE Instrumentation Measurement Technology Conf., Budapest, Hungary, 21–23 May 2001, vol. 3, pp. 18721874.
    15. 15)
      • 15. Brandolini, A., Faifer, M., Ottoboni, R.: ‘A simple method for the calibration of traditional and electronic measurement current and voltage transformers’, IEEE Trans. Instrum. Meas., 2009, 58, (5), pp. 13451353.
    16. 16)
      • 16. So, E., Arseneau, R., Bennett, D., et al: ‘A current-comparator-based system for calibrating high-voltage current transformers under actual operating conditions’, IEEE Trans. Instrum. Meas., 2011, 60, (7), pp. 24492454.
    17. 17)
      • 17. Callegaro, L., Cassiago, C., Gasparotto, E.: ‘On the calibration of direct current transformers (DCCT)’, IEEE Trans. Instrum. Meas., 2015, 64, (3), pp. 723728.
    18. 18)
      • 18. Pasini, G., Peretto, L., Roccato, P., et al: ‘Traceability of low-power voltage transformer for medium voltage application’, IEEE Trans. Instrum. Meas., 2014, 63, (12), pp. 28042812.
    19. 19)
      • 19. Tang, Y., Stenbakken, G.N., Goldstein, A.: ‘Calibration of phasor measurement unit at NIST’, IEEE Trans. Instrum. Meas., 2013, 62, (6), pp. 14171422.
    20. 20)
      • 20. Shi, D., Tylavsky, D.J., Logic, N.: ‘An adaptive method for detection and correction of errors in PMU measurements’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 15751583.
    21. 21)
      • 21. Braun, J.P., Seigenthaler, S.: ‘Calibration of PMUs with a reference grade calibrator’. Proc. IEEE Conf. Precision Electromagnetic Meas. (CPEM), Rio de Janeiro, Brazil, 24–29 August 2014, pp. 678679.
    22. 22)
      • 22. Zhou, M., Centeno, V.A., Thorp, J.S., et al: ‘Calibrating instrument transformers with phasor measurements’, Elect. Power Compon. Syst., 2012, 40, (14), pp. 16051620.
    23. 23)
      • 23. Wu, Z., Thomas, K., Sun, K., et al: ‘Three-phase instrument transformer calibration with synchronized phasor measurements’. Proc. IEEE Power and Energy Society Innovative Smart Grid Technologies (ISGT), Washington, DC, 16–20 January 2012, pp. 16.
    24. 24)
      • 24. Wu, Z.: ‘Synchronized phasor measurement applications in three-phase power systems’. PhD Dissertation, Bradley Dept. Elect. Comput. Eng., Virginia Tech, Blacksburg, 2013.
    25. 25)
      • 25. Pal, A., Chatterjee, P., Thorp, J.S., et al: ‘On-line calibration of voltage transformers using synchrophasor measurements’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 370380.
    26. 26)
      • 26. IEEE Std. C37.118.2: ‘IEEE standard for synchrophasor data transfer for power systems’, December 2011, pp. 153.
    27. 27)
      • 27. ‘Advanced Systems for Power Engineering (ASPEN)’, available at
    28. 28)
      • 28. Gao, F., Thorp, J.S., Pal, A., et al: ‘Dynamic state prediction based on auto-regressive (AR) model using PMU data’. Proc. IEEE Power Energy Conf. Illinois (PECI), Champaign, IL, 24–25 February 2012, pp. 15.
    29. 29)
      • 29. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    30. 30)
      • 30. The MathWorks Inc.: ‘MATLAB version 7.10.0’, (computer software), Natick, MA, 2010.
    31. 31)
      • 31. IEEE Std. C57.13-2008: ‘IEEE standard requirements for instrument transformers’, July 2008, pp. c182.

Related content

This is a required field
Please enter a valid email address