access icon free Technique for inrush current modelling of power transformers based on core saturation analysis

Energising a power transformer may cause inrush current, which misleads the protection systems. Therefore, the inrush current analysis is important in designing and protecting power transformers. The non-linear behaviour of transformer core saturation makes this analysis difficult. Thus, several researches try to model the core saturation and inrush current. This study presents a new technique based on core flux analysis to develop an equivalent circuit for power transformer during inrush current. For this purpose, a new λi equivalent circuit is proposed for saturated core transformer by transformation of conventional vi circuit. This λi equivalent circuit clearly shows the effect of parameters on transformer saturation and inrush current; and provides a powerful insight into these phenomena. Moreover, new equations are developed which can predict inrush current and core-flux envelopes. The predicted waveforms can be compared with measured transformer current to detect transformer internal-fault during inrush current, which is a challenge in transformer protection. This model and the equations are compared with the recorded inrush current waveform of a real transformer, and simulation results. These comparisons verify the efficiency of the model and accuracy of the equations.

Inspec keywords: power transformer protection; transformer cores; equivalent circuits; fault diagnosis; magnetic flux

Other keywords: core flux analysis; power transformer protection; transformer saturation; transformer core saturation; core-flux envelope; power transformer inrush current modelling; equivalent circuit; v–i circuit; transformer internal-fault detection; λ–i equivalent circuit; nonlinear behaviour; saturated core transformer; core saturation analysis; inrush current analysis

Subjects: Magnetic cores; Transformers and reactors

References

    1. 1)
      • 28. EMTP-RV T.T.: ‘3 phase, 3 winding transformers’, in ‘EMTP-RV user manual. EMTP-EMTPWorks devices documents’ (EMTP-RV, Quebec, Canada, 2005, 2nd edn.), pp. 17.
    2. 2)
      • 8. Bronzeado, H., Yacamini, R.: ‘Transformer inrush calculations using a coupled electromagnetic model’, IEEE Proc. Sci. Meas. Tech., 1994, 141, pp. 491498.
    3. 3)
      • 14. Chen, S.D., Lin, R.L., Cheng, C.K.: ‘Magnetizing inrush model of transformers based on structure parameters’, IEEE Trans. Power Deliv., 2005, 20, pp. 19471954.
    4. 4)
      • 11. Yacamini, R., Abu-Nasser, A.: ‘Numerical calculation of inrush current in single-phase transformers’, IEEE Proc. B Electr. Power Appl., 1981, 128, pp. 327328.
    5. 5)
      • 29. Cameron, A.C., Windmeijer, F.A.G.: ‘An R-squared measure of goodness of fit for some common nonlinear regression models’, J. Econ., 1997, 77, pp. 329342.
    6. 6)
      • 4. Persson, M., Baig, W., Thiringer, T.: ‘Measurements and modelling of three- and five-limb transformer behaviour during large voltage and frequency disturbances’, IET Gener. Transm. Distrib., 2016, 10, pp. 334340.
    7. 7)
      • 12. Vanti, M.G., Bertoli, S.L., Cabrai, S.H.L., et al: ‘Semianalytic solution for a simple model of inrush currents in transformers’, IEEE Trans. Magn., 2008, 44, pp. 12701273.
    8. 8)
      • 24. Holcomb, J.E.: ‘Distribution transformer magnetizing inrush current’, Trans. AIEE, Part III: Power Appar. Syst., 1961, 80, pp. 697702.
    9. 9)
      • 2. Lin, C.E., Cheng, C.L., Huang, C.L., et al: ‘Investigation of magnetizing inrush current in transformers. I. Numerical simulation’, IEEE Trans. Power Deliv., 1993, 8, pp. 246254.
    10. 10)
      • 26. Bertagnolli, G.: ‘Short-circuit duty of power transformers: the ABB approach’ (Golinelli, Formigine, 1996).
    11. 11)
      • 25. Specht, T.R.: ‘Transformer magnetizing inrush current’, Trans. Am. Inst. Electr. Eng., 1951, 70, pp. 323328.
    12. 12)
      • 19. Liu, J., Dinavahi, V.: ‘Detailed magnetic equivalent circuit based real-time nonlinear power transformer model on FPGA for electromagnetic transient studies’, IEEE Trans. Ind. Electron., 2016, 63, pp. 11911202.
    13. 13)
      • 1. Zou, M., Wenxia, S., Ming, Y., et al: ‘Improved low-frequency transformer model based on Jiles–Atherton hysteresis theory’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 915923.
    14. 14)
      • 17. Abdulsalam, S.G., Xu, W., Neves, W.L.A., et al: ‘Estimation of transformer saturation characteristics from inrush current waveforms’, IEEE Trans. Power Deliv., 2006, 21, pp. 170177.
    15. 15)
      • 15. Chiesa, N., Hidalen, H.K., Mork, B.A.: ‘Transformer model for inrush current calculations: simulations, measurements and sensitivity analysis’, IEEE Trans. Power Deliv., 2010, 25, pp. 25992608.
    16. 16)
      • 20. Wang, Y., Abdulsalam, S.G., Xu, W.: ‘Analytical formula to estimate the maximum inrush current’, IEEE Trans. Power Deliv., 2008, 23, pp. 12661268.
    17. 17)
      • 18. Naghizadeh, R.A., Vahidi, B., Hosseinian, S.H.: ‘Modelling of inrush current in transformers using inverse Jiles–Atherton hysteresis model with a neuro-shuffled frog-leaping algorithm approach’, IET Electr. Power Appl., 2012, 6, pp. 727728.
    18. 18)
      • 3. Lin, C.E., Cheng, C.L., Huang, C.L., et al: ‘Investigation of magnetizing inrush current in transformers. II. Harmonic analysis’, IEEE Trans. Power Deliv., 1993, 8, pp. 255263.
    19. 19)
      • 5. Rico, J.J., Acha, E., Madrigal, M.: ‘The study of inrush current phenomenon using operational matrices’, IEEE Trans. Power Deliv., 2001, 16, pp. 231237.
    20. 20)
      • 23. Girgis, R.S., Tenyenuis, E.G.: ‘Characteristics of inrush current of present designs of power transformers’. IEEE Power Eng, Soc. General Meeting, 2007, 12, pp. 16.
    21. 21)
      • 10. Chen, X.S., Neudorfer, P.: ‘Digital model for transient studies of a three-phase five-legged transformer’, IEEE Proc. C Gener. Transm. Distrib., 1992, 139, pp. 2127.
    22. 22)
      • 9. Smith, K.S., Ran, L., Leyman, B.: ‘Analysis of transformer inrush transients in offshore electrical systems’, IEEE Proc. C Gener. Transm. Distrib., 1999, 146, pp. 8995.
    23. 23)
      • 21. Jazebi, S., de Leon, F., Wu, N.: ‘Enhanced analytical method for the calculation of the maximum inrush currents of single-phase power transformers’, IEEE Trans. Power Deliv., 2015, 30, pp. 25902599.
    24. 24)
      • 16. Faiz, J., Saffari, S.: ‘Inrush current modeling in a single-phase transformer’, IEEE Trans. Magn., 2010, 46, pp. 578581.
    25. 25)
      • 22. Zirka, S.E., Moroz, Y.I., Arturi, C.M., et al: ‘Topology-correct reversible transformer model’, IEEE Trans. Power Deliv., 2012, 27, pp. 20372045.
    26. 26)
      • 7. Wu, Q., Jazebi, S., Leon, D.F.: ‘Parameter estimation of three-phase transformer models for low-frequency transient studies from terminal measurements’, IEEE Trans. Magn., 2017, 53, pp. 710718.
    27. 27)
      • 13. Chen, X., Venkata, S.S.: ‘A three-phase three-winding core-type transformer model for low-frequency transient studies’, IEEE Power Eng. Rev., 1997, 17, pp. 8586.
    28. 28)
      • 27. Nakra, H., Barton, T.: ‘Three phase transformer transients’, IEEE Trans. Power Appar. Syst., 1974, 93, pp. 1112.
    29. 29)
      • 6. Adly, A.A.: ‘Computation of inrush current forces on transformer windings’, IEEE Trans. Magn., 2001, 37, pp. 28552857.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1272
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1272
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading