http://iet.metastore.ingenta.com
1887

Technique for inrush current modelling of power transformers based on core saturation analysis

Technique for inrush current modelling of power transformers based on core saturation analysis

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Energising a power transformer may cause inrush current, which misleads the protection systems. Therefore, the inrush current analysis is important in designing and protecting power transformers. The non-linear behaviour of transformer core saturation makes this analysis difficult. Thus, several researches try to model the core saturation and inrush current. This study presents a new technique based on core flux analysis to develop an equivalent circuit for power transformer during inrush current. For this purpose, a new λi equivalent circuit is proposed for saturated core transformer by transformation of conventional vi circuit. This λi equivalent circuit clearly shows the effect of parameters on transformer saturation and inrush current; and provides a powerful insight into these phenomena. Moreover, new equations are developed which can predict inrush current and core-flux envelopes. The predicted waveforms can be compared with measured transformer current to detect transformer internal-fault during inrush current, which is a challenge in transformer protection. This model and the equations are compared with the recorded inrush current waveform of a real transformer, and simulation results. These comparisons verify the efficiency of the model and accuracy of the equations.

References

    1. 1)
      • 1. Zou, M., Wenxia, S., Ming, Y., et al: ‘Improved low-frequency transformer model based on Jiles–Atherton hysteresis theory’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 915923.
    2. 2)
      • 2. Lin, C.E., Cheng, C.L., Huang, C.L., et al: ‘Investigation of magnetizing inrush current in transformers. I. Numerical simulation’, IEEE Trans. Power Deliv., 1993, 8, pp. 246254.
    3. 3)
      • 3. Lin, C.E., Cheng, C.L., Huang, C.L., et al: ‘Investigation of magnetizing inrush current in transformers. II. Harmonic analysis’, IEEE Trans. Power Deliv., 1993, 8, pp. 255263.
    4. 4)
      • 4. Persson, M., Baig, W., Thiringer, T.: ‘Measurements and modelling of three- and five-limb transformer behaviour during large voltage and frequency disturbances’, IET Gener. Transm. Distrib., 2016, 10, pp. 334340.
    5. 5)
      • 5. Rico, J.J., Acha, E., Madrigal, M.: ‘The study of inrush current phenomenon using operational matrices’, IEEE Trans. Power Deliv., 2001, 16, pp. 231237.
    6. 6)
      • 6. Adly, A.A.: ‘Computation of inrush current forces on transformer windings’, IEEE Trans. Magn., 2001, 37, pp. 28552857.
    7. 7)
      • 7. Wu, Q., Jazebi, S., Leon, D.F.: ‘Parameter estimation of three-phase transformer models for low-frequency transient studies from terminal measurements’, IEEE Trans. Magn., 2017, 53, pp. 710718.
    8. 8)
      • 8. Bronzeado, H., Yacamini, R.: ‘Transformer inrush calculations using a coupled electromagnetic model’, IEEE Proc. Sci. Meas. Tech., 1994, 141, pp. 491498.
    9. 9)
      • 9. Smith, K.S., Ran, L., Leyman, B.: ‘Analysis of transformer inrush transients in offshore electrical systems’, IEEE Proc. C Gener. Transm. Distrib., 1999, 146, pp. 8995.
    10. 10)
      • 10. Chen, X.S., Neudorfer, P.: ‘Digital model for transient studies of a three-phase five-legged transformer’, IEEE Proc. C Gener. Transm. Distrib., 1992, 139, pp. 2127.
    11. 11)
      • 11. Yacamini, R., Abu-Nasser, A.: ‘Numerical calculation of inrush current in single-phase transformers’, IEEE Proc. B Electr. Power Appl., 1981, 128, pp. 327328.
    12. 12)
      • 12. Vanti, M.G., Bertoli, S.L., Cabrai, S.H.L., et al: ‘Semianalytic solution for a simple model of inrush currents in transformers’, IEEE Trans. Magn., 2008, 44, pp. 12701273.
    13. 13)
      • 13. Chen, X., Venkata, S.S.: ‘A three-phase three-winding core-type transformer model for low-frequency transient studies’, IEEE Power Eng. Rev., 1997, 17, pp. 8586.
    14. 14)
      • 14. Chen, S.D., Lin, R.L., Cheng, C.K.: ‘Magnetizing inrush model of transformers based on structure parameters’, IEEE Trans. Power Deliv., 2005, 20, pp. 19471954.
    15. 15)
      • 15. Chiesa, N., Hidalen, H.K., Mork, B.A.: ‘Transformer model for inrush current calculations: simulations, measurements and sensitivity analysis’, IEEE Trans. Power Deliv., 2010, 25, pp. 25992608.
    16. 16)
      • 16. Faiz, J., Saffari, S.: ‘Inrush current modeling in a single-phase transformer’, IEEE Trans. Magn., 2010, 46, pp. 578581.
    17. 17)
      • 17. Abdulsalam, S.G., Xu, W., Neves, W.L.A., et al: ‘Estimation of transformer saturation characteristics from inrush current waveforms’, IEEE Trans. Power Deliv., 2006, 21, pp. 170177.
    18. 18)
      • 18. Naghizadeh, R.A., Vahidi, B., Hosseinian, S.H.: ‘Modelling of inrush current in transformers using inverse Jiles–Atherton hysteresis model with a neuro-shuffled frog-leaping algorithm approach’, IET Electr. Power Appl., 2012, 6, pp. 727728.
    19. 19)
      • 19. Liu, J., Dinavahi, V.: ‘Detailed magnetic equivalent circuit based real-time nonlinear power transformer model on FPGA for electromagnetic transient studies’, IEEE Trans. Ind. Electron., 2016, 63, pp. 11911202.
    20. 20)
      • 20. Wang, Y., Abdulsalam, S.G., Xu, W.: ‘Analytical formula to estimate the maximum inrush current’, IEEE Trans. Power Deliv., 2008, 23, pp. 12661268.
    21. 21)
      • 21. Jazebi, S., de Leon, F., Wu, N.: ‘Enhanced analytical method for the calculation of the maximum inrush currents of single-phase power transformers’, IEEE Trans. Power Deliv., 2015, 30, pp. 25902599.
    22. 22)
      • 22. Zirka, S.E., Moroz, Y.I., Arturi, C.M., et al: ‘Topology-correct reversible transformer model’, IEEE Trans. Power Deliv., 2012, 27, pp. 20372045.
    23. 23)
      • 23. Girgis, R.S., Tenyenuis, E.G.: ‘Characteristics of inrush current of present designs of power transformers’. IEEE Power Eng, Soc. General Meeting, 2007, 12, pp. 16.
    24. 24)
      • 24. Holcomb, J.E.: ‘Distribution transformer magnetizing inrush current’, Trans. AIEE, Part III: Power Appar. Syst., 1961, 80, pp. 697702.
    25. 25)
      • 25. Specht, T.R.: ‘Transformer magnetizing inrush current’, Trans. Am. Inst. Electr. Eng., 1951, 70, pp. 323328.
    26. 26)
      • 26. Bertagnolli, G.: ‘Short-circuit duty of power transformers: the ABB approach’ (Golinelli, Formigine, 1996).
    27. 27)
      • 27. Nakra, H., Barton, T.: ‘Three phase transformer transients’, IEEE Trans. Power Appar. Syst., 1974, 93, pp. 1112.
    28. 28)
      • 28. EMTP-RV T.T.: ‘3 phase, 3 winding transformers’, in ‘EMTP-RV user manual. EMTP-EMTPWorks devices documents’ (EMTP-RV, Quebec, Canada, 2005, 2nd edn.), pp. 17.
    29. 29)
      • 29. Cameron, A.C., Windmeijer, F.A.G.: ‘An R-squared measure of goodness of fit for some common nonlinear regression models’, J. Econ., 1997, 77, pp. 329342.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1272
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1272
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address