Optimal design of IT2-FCS-based STATCOM controller applied to power system with wind farms using Taguchi method

Optimal design of IT2-FCS-based STATCOM controller applied to power system with wind farms using Taguchi method

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The static synchronous compensator (STATCOM) has attracted considerable attention because it can stabilise severe transients that are caused by power system disturbances. This study presents a novel interval type 2 fuzzy control system (IT2-FCS)-based controller for the STATCOM to stabilise bus voltages that are caused by faults or forced wind farm outages in a smart grid. Two IT2-FCSs are presented to tune increments of the proportional integral (PI) controller, which are optimised by the gradient descent method. The IT2 fuzzy rules, involving upper and lower membership functions, result in a fast and stable system response. Since many possible scenarios may arise in the power system, the Taguchi method is used to design experiments using an orthogonal array, in which all scenarios are mutually independent. A power system that consists of a wind farm and STATCOM is studied. Comparative studies show that the proposed method is superior to traditional PI and type 1 FCS methods.


    1. 1)
      • 1. Hu, R., Hu, W., Chen, Z.: ‘Review of power system stability with high wind power penetration’. Proc. IEEE 41st Annual Conf. Industrial Electronics, Yokohama, Japan, November 2015, pp. 003539003544.
    2. 2)
      • 2. Edrah, M., Lo, K.L., Anaya-Lara, O.: ‘Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 759766.
    3. 3)
      • 3. Bu, S.Q., Du, W., Wang, H.F., et al: ‘Probabilistic analysis of small-signal stability of large-scale power systems as affected by penetration of wind generation’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 762770.
    4. 4)
      • 4. Hossain, M.J., Pota, H.R., Mahmud, M.A., et al: ‘Investigation of the impacts of large-scale wind power penetration on the angle and voltage stability of power systems’, IEEE Syst. J., 2012, 6, (1), pp. 7684.
    5. 5)
      • 5. Doherty, R., Denny, E., O'Malley, M.: ‘System operation with a significant wind power penetration’. Proc. IEEE Power Engineering Society General Meeting, Denver, CO, USA, June 2004, vol. 1, pp. 10021007.
    6. 6)
      • 6. Rosyadi, M., Muyeen, S.M., Takahashi, R., et al: ‘Voltage stability control of wind farm using PMSG based variable speed wind turbine’. Proc. Int. Conf. Electrical Machines, Marseille, France, September 2012.
    7. 7)
      • 7. Rather, Z.H., Chen, Z., Thøgersen, P., et al: ‘Dynamic reactive power compensation of large-scale wind integrated power system’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 25162526.
    8. 8)
      • 8. Salehi, V., Afsharnia, S., Kahrobaee, S.: ‘Improvement of voltage stability in wind farm connection to distribution network using FACTS devices’. Proc. IEEE 32nd Annual. Conf. Industrial Electronics, IECON'06, Paris, France, November 2006, pp. 42424247.
    9. 9)
      • 9. Xu, L., Yao, L., Sasse, C.: ‘Comparison of using SVC and STATCOM for wind farm integration’. Proc. IEEE 2006 Int. Conf. Power Syst. Technology (POWERCON 2006), Chongqing, China, October 2006, pp. 17.
    10. 10)
      • 10. Mahfouz, M.M.A., El-Sayed, M.A.H.: ‘Static synchronous compensator sizing for enhancement of fault ride-through capability and voltage stabilisation of fixed speed wind farms’, IET Renew. Power Gener., 2014, 8, (1), pp. 19.
    11. 11)
      • 11. Wang, L., Truong, D.N.: ‘Dynamic stability improvement of four parallel-operated PMSG-based offshore wind turbine generators fed to a power system using a STATCOM’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 111119.
    12. 12)
      • 12. Han, C., Huang, A.Q., Baran, M.E., et al: ‘STATCOM impact study on the integration of a large wind farm into a weak loop power system’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 226233.
    13. 13)
      • 13. Yasmeena Das, G.T.R.: Fuzzy set theory applications for FACTS devices in grid connected renewable power systems’. Proc. Int. Conf. Devices, Circuits and Systems (ICDCS), Coimbatore, India, March 2016, pp. 245261.
    14. 14)
      • 14. Zadeh, L.A.: ‘The concept of a linguistic variable and its application to approximate reasoning – I’, Inform. Sci., 1975, 8, pp. 199249.
    15. 15)
      • 15. Liang, Q., Mendel, J.M.: ‘Interval type-2 fuzzy logic systems: theory and design’, IEEE Trans. Fuzzy Syst., 2000, 8, (5), pp. 535550.
    16. 16)
      • 16. Raju, S.K., Pillai, G.N.: ‘Design and implementation of type-2 fuzzy logic controller for DFIG-based wind energy systems in distribution networks’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 345353.
    17. 17)
      • 17. Yassin, H.M., Hanafy, H.H., Hallouda, M.M.: ‘Enhancement low-voltage ride through capability of permanent magnet synchronous generator-based wind turbines using interval type-2 fuzzy control’, IET Renew. Power Gener., 2016, 10, (3), pp. 339348.
    18. 18)
      • 18. Sakalli, A., Kumbasar, T., Yesilm, E., et al: ‘Analysis of the performances of type-1, self-tuning type-1 and interval type-2 fuzzy PID controllers on the magnetic levitation system’. Proc. IEEE Inter. Conf. Fuzzy Systems, Beijing, China, July 2014, pp. 18591866.
    19. 19)
      • 19. Roy, R.K.: ‘Design of experiments using the Taguchi approach’ (John Wiley & Sons, New York, 2001).
    20. 20)
      • 20. Liu, D., Cai, Y.: ‘The Taguchi method for solving the economic dispatch problem with nonsmooth cost functions’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 20062014.
    21. 21)
      • 21. Hong, Y.Y., Lin, F.J., Yu, T.H.: ‘The Taguchi method-based probabilistic load flow studies considering uncertain renewables and loads’, IET Renew. Power Gener., 2016, 10, (2), pp. 221227e.
    22. 22)
      • 22. Mendel, J.M.: ‘Uncertain rule-based fuzzy logic systems: introduction and new directions’ (Prentice Hall PTR, Upper Saddle River, NJ, 2001).
    23. 23)
      • 23. Mondal, D., Chakrabarti, A., Sengupta, A.: ‘Power system small signal stability analysis and control’ (Academic Press, Cambridge, MA, USA, 2014), pp. 4183.
    24. 24)
      • 24. Optimization Toolbox User's Guide, MATLAB, R2017a, MathWorks Inc..
    25. 25)
      • 25. Chen, G., Pham, T.T.: ‘Introduction to fuzzy sets, fuzzy logic and fuzzy control systems’ (CRC Press, Boca Raton, Florida, USA, 2001), p. 215.
    26. 26)
      • 26. Aliev, R.A., Guirimov, B.G.: ‘Type-2 fuzzy neural networks and their applications’ (Springer, New York, NY, USA, 2014), p. 129.
    27. 27)
      • 27. Al-Fandi, M., Jaradat, M.A.K., Sardahi, Y.: ‘Optimal PI-fuzzy logic controller of glucose concentration using genetic algorithm’, Int. J. Knowl.-Based Intell. Eng. Syst., 2011, 15, pp. 99117.
    28. 28)
      • 28. Chowdhury, M.A., Sayem, A.H.M., Shen, W., et al: ‘Robust active disturbance rejection controller design to improve low-voltage ride-through capability of doubly fed induction generator wind farms’, IET Renew. Power Gener., 2015, 9, (8), pp. 961969.
    29. 29)
      • 29. Bayem, H., Capely, L., Dufourd, F., et al: ‘Probabilistic study of the maximum penetration rate of renewable energy in an island network’. Proc. IEEE PowerTech, Bucharest, Romania, June 2009.

Related content

This is a required field
Please enter a valid email address