http://iet.metastore.ingenta.com
1887

Stability and control of mixed AC–DC systems with VSC-HVDC: a review

Stability and control of mixed AC–DC systems with VSC-HVDC: a review

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Voltage-source converter-high-voltage direct current (VSC-HVDC) systems have become an attractive option for integrating remote and far-from-shore renewable energy resources to main AC grids. The desire for greater power transfer capability and the difficulty in securing right-of-way for new AC lines in many countries is also resulting in the increased use of embedded VSC-HVDC systems operating in parallel with existing AC lines. It has been stated that the control and operation of VSC-HVDC systems are of particular concern for weak grids with fewer large synchronous generation units (a highly probable case for many grids in future). If the anticipated proliferation of VSC-HVDC links continues, several aspects of system stability will be significantly impacted. This study presents an overview of the effects of VSC-HVDC control and operation on power system stability. The structure, control, control tuning, and modelling of VSC-HVDC is briefly summarised to provide context for subsequent discussion of the system dynamics. An extensive critical review of the previous research into mixed AC–DC systems incorporating VSC-HVDC is then provided including voltage stability, small and large-disturbance angle stability, high-frequency interaction, and frequency stability. Finally, recommendations are presented to guide critical future research.

References

    1. 1)
      • 1. European Network for Transmission System Operators for Electricity (ENTSO-E): ‘Operation handbook’. Technical Report, ENTSO-E, 2012.
    2. 2)
      • 2. VSC-HVDC Newsletter, 5, (3), February 2017.
    3. 3)
      • 3. Rao, H.: ‘Architecture of Nan'ao multi-terminal VSC-HVDC system and its multi-functional control’, CSEE J. Power Energy Syst., 2015, 1, (1), pp. 918.
    4. 4)
      • 4. Egea-Alvarez, A., Beerten, J., Hertem, D.V., et al: ‘Hierarchical power control of multi-terminal HVDC grids’, Electr. Power Syst. Res., 2015, 121, pp. 207215.
    5. 5)
      • 5. NR Electric: ‘World's first five-terminal VSC-HVDC transmission project’. Available at NR Electric company website http://www.nrec.com/en/public/doc_resources/2014/09/10/10/540fb4af446fb.pdf, accessed 30 May 2017.
    6. 6)
      • 6. Saad, H., Dennetiére, S., Clerc, B.: ‘Interactions investigations between power electronics devices embedded in HVAC network’. The 13th Int. Conf. AC and DC Power Transmission (AC DC 2017), February 2017.
    7. 7)
      • 7. Zhu, C., Hu, M., Wu, Z.: ‘Parameters impact on the performance of a double-fed induction generator-based wind turbine for sub-synchronous resonance control’, IET Renew. Power Gener., 2012, 6, (2), pp. 9298.
    8. 8)
      • 8. Shen, L., Barnes, M., Milanovic, J.V., et al: ‘Potential interaction between VSC-HVDC and STATCOM’. 18th Power System Computation Conf. (PSCC), August 2014.
    9. 9)
      • 9. Jovcic, D., Lamont, L.A., Xu, L.: ‘VSC transmission model for analytical studies’. IEEE Power and Energy Society General Meeting, 2003.
    10. 10)
      • 10. Sharifabadi, K., Harnefors, L., Nee, H.P., et al: ‘Design, control, and application of modular multilevel converters for HVDC transmission systems’ (John Wiley & Sons, Inc., NJ, USA, 2016).
    11. 11)
      • 11. Davidson, C.: ‘HVDC for securing supply’. Available at http://www.offshorewind.biz, accessed 30 May 2016.
    12. 12)
      • 12. Ahmed, N., Ängquist, L., Norrga, S., et al: ‘A computationally efficient continuous model for the modular multilevel converter’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (4), pp. 11391148.
    13. 13)
      • 13. Barker, C.: ‘HVDC plenary session-grid’, IEEE EPEC, Winnipeg, MB, Canada, October 2011.
    14. 14)
      • 14. Cole, S., Beerten, J., Belmans, R.: ‘Generalized dynamic VSC MTDC model for power system stability studies’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 16551662.
    15. 15)
      • 15. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control: analysis and design’ (John Wiley & Sons, Inc., Chichester, UK, 2001).
    16. 16)
      • 16. Beddard, A.J.: ‘Factors affecting the reliability of VSC-HVDC for connecting offshore wind farms’. PhD dissertation, School of Electrical and Electronic Engineering, The University of Manchester, 2014.
    17. 17)
      • 17. Kazmierkowski, M., Malesani, L.: ‘Current control techniques for three-phase voltage source PWM converters: a survey’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 691703.
    18. 18)
      • 18. Schauder, C., Mehta, H.: ‘Vector analysis and control of advanced static VAr compensators’, IEE Proc. C, Gener. Transm. Distrib., 1993, 140, (4), pp. 299306.
    19. 19)
      • 19. Mariéthoz, S., Fuchs, A., Morari, M.: ‘A VSC-HVDC decentralized model predictive control scheme for fast power tracking’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 462471.
    20. 20)
      • 20. Wang, W., Beddard, A., Barnes, M., et al: ‘Analysis of active power control for VSC-HVDC’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 19781988.
    21. 21)
      • 21. Sanz, I.M., Chaudhuri, B., Strbac, G.: ‘Inertia response from offshore wind farms connected through DC grids’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 15181527.
    22. 22)
      • 22. Chaudhuri, N.R., Chaudhuri, B., Majumder, R., et al: ‘Multi-terminal direct current grid: modelling, analysis and control’ (John Willey & Sons Inc., NJ, USA, 2014).
    23. 23)
      • 23. Delghavi, M.B., Yazdani, A.: ‘Islanded-mode control of electronically coupled distributed-resource units under unbalanced and nonlinear load conditions’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 661673.
    24. 24)
      • 24. Beerten, J., Belmans, R.: ‘VSC-MTDC systems with a distributed DC voltage control – a power flow approach’, IEEE Powertech. Trondheim, Trondheim, Norway, May 2011.
    25. 25)
      • 25. Beddard, A., Adamczyk, A., Barnes, M., et al: ‘HVDC grid control system based on autonomous converter control’. Eighth IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2016), 2016.
    26. 26)
      • 26. Dierckxsens, C., Srivastava, K., Reza, M., et al: ‘A distributed DC voltage control method for VSC MTDC systems’, Electr. Power Syst. Res., 2012, 82, (1), pp. 5458.
    27. 27)
      • 27. Rouzbehi, K., Miranian, A., Luna, A., et al: ‘DC voltage control and power sharing in multi-terminal DC grids based on optimal power flow and voltage-droop’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (4), pp. 11711179.
    28. 28)
      • 28. Svensson, J.: ‘Grid-connected voltage source converter control principles and wind energy applications’. PhD dissertation, School of Electrical and Computer Engineering, Chalmers University of Technology, 1998.
    29. 29)
      • 29. Wang, W.: ‘Operation, control, and stability analysis of multi-terminal VSC-HVDC systems’. PhD dissertation, School of Electrical and Electronic Engineering, The University of Manchester, 2015.
    30. 30)
      • 30. Arunprasanth, S., Annakkage, U.D., Karawita, C., et al: ‘Generalized frequency-domain controller tuning procedure for VSC systems’, IEEE Trans. Power Deliv., 2015, 31, (2), pp. 732742.
    31. 31)
      • 31. Durrant, M., Werner, H., Abbott, K.: ‘Synthesis of multi-objective controllers for a VSC-HVDC terminal using LMIs’. IEEE Conf. Decision and Control, 2004, pp. 44734478.
    32. 32)
      • 32. Pradhan, J.K., Ghosh, A., Bhende, C.N.: ‘Small-signal modelling and multivariable PI control design of VSC-HVDC transmission link’, Electr. Power Syst. Res., 2017, 144, pp. 115126.
    33. 33)
      • 33. D'Arco, S., Suul, J.A., Fosso, O.B.: ‘Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 17431753.
    34. 34)
      • 34. Bajracharya, C., Molinas, M., Suul, J.A., et al: ‘Understanding of tuning techniques of converter controllers for VSC-HVDC’. Nordic Workshop on Power and Industrial Electronics, 2008.
    35. 35)
      • 35. Ahmed, K., Jovcic, D.: ‘High voltage direct current transmission: converters, systems and DC grids’ (John Willey & Sons Inc., NJ, USA, 2015).
    36. 36)
      • 36. Egea-Alvarez, A., Fekriasl, S., Hassan, F., et al: ‘Advanced vector control for voltage source converters connected to weak grids’, IEEE Trans. Power Syst., 2011, 30, (6), pp. 30723081.
    37. 37)
      • 37. Beddard, A., Barnes, M.: ‘HVDC cable modelling for VSC-HVDC applications’. IEEE Power and Energy Society General Meeting (PESGM), 2014.
    38. 38)
      • 38. Beerten, J., D'Arco, S., Suul, J.A.: ‘Frequency-dependent cable modelling for small-signal stability analysis of VSC-HVDC systems’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13701381.
    39. 39)
      • 39. Aik, D.L.H., Andersson, G.: ‘Voltage stability analysis of multi-infeed HVDC systems’, IEEE Trans. Power Deliv., 1997, 12, (3), pp. 13091318.
    40. 40)
      • 40. Yuan, W., Zhang, Y.: ‘Study of the static voltage stability in multi-infeed AC/DC system’. IEEE/PES Transmission, Distribution Conf. Exhibition: Asia and Pacific, 2005.
    41. 41)
      • 41. Guo, C., Zhang, Y., Gole, A.M., et al: ‘Analysis of dual-infeed HVDC with LCC-HVDC and VSC-HVDC’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15291537.
    42. 42)
      • 42. Guo, C., Zhao, C.: ‘Supply of an entirely passive AC network through a double-infeed HVDC system’, IEEE Trans. Power Electron., 2010, 25, (11), pp. 28352841.
    43. 43)
      • 43. Zhong, Q., Zhang, Y., Lin, L.: ‘Study of HVDC light for its enhancement of AC/DC interconnected transmission system’. IEEE Power and Energy Society General Meeting (PESGM), 2008.
    44. 44)
      • 44. Liu, Y., Chen, Z.: ‘A flexible power control method of VSC-HVDC link for the enhancement of effective short-circuit ratio in hybrid multi-infeed HVDC system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15681581.
    45. 45)
      • 45. George Holthe, A.H.: ‘Analysis of a multi-infeed HVDC system in the Norwegian power system’. MSc thesis, Department of Electrical Power Engineering, Norwegian University of Science and Technology, June 2014.
    46. 46)
      • 46. Erlich, I., Winter, W.: ‘A method of incorporating VSC-HVDC into overall grid voltage and reactive power control task’. Power System Computation Conf. (PSCC), 2016.
    47. 47)
      • 47. Urquidez, O.A., Xie, L.: ‘Singular value based optimal control of embedded VSC-HVDC for steady state voltage stability enhancement’, IEEE Trans. Power Sys., 2016, 30, (1), pp. 216224.
    48. 48)
      • 48. Shen, L., Barnes, M., Preece, R., et al: ‘The effect of VSC-HVDC control on AC system electromechanical oscillations and DC system dynamics’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 10851095.
    49. 49)
      • 49. Amin, M., Zade, M., Suul, J.A., et al: ‘Stability analysis of interconnected AC power systems with multi-terminal DC grids based on the CIGRE DC grid test system’. IET Renewable Power Generation Conf. (RPG 2014), 2014.
    50. 50)
      • 50. Chaudhuri, N.R., Majumder, R., Chaudhuri, B., et al: ‘Stability analysis of VSC MTDC grids connected to multi-machine AC systems’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 27742784.
    51. 51)
      • 51. Ajaei, F.B., Iravani, R.: ‘Dynamic interactions of the MMC-HVDC grid and its host AC system due to AC-side disturbances’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 12891298.
    52. 52)
      • 52. Trinh, N., Erlich, I.: ‘Analytical investigation of factors influencing controllability of MMC-VSC-HVDC on inter-area and local oscillations in interconnected power systems’. IEEE Power and Energy Society General Meeting (PESGM), 2016.
    53. 53)
      • 53. Zeni, L., Eriksson, R., Goumalatsos, S., et al: ‘Power oscillation damping from VSC-HVDC connected offshore wind power plants’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 829838.
    54. 54)
      • 54. Preece, R., Milanovic, J.V., Almutairi, A.M., et al: ‘Damping of interarea oscillations in mixed AC–DC network using WAMS based supplementary controller’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 11601169.
    55. 55)
      • 55. Eriksson, R.: ‘A new control structure for multi-terminal DC grids to damp interarea oscillations’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 990998.
    56. 56)
      • 56. Hadjikypris, M., Marjanovic, O., Terzija, V.: ‘Damping of inter-area power oscillations in hybrid AC–DC power systems based on supervisory control scheme utilizing FACTS and HVDC’. Power System Computation Conf. (PSCC), 2016.
    57. 57)
      • 57. Pipelzadeh, Y., Chaudhuri, B., Green, T.C.: ‘Control coordination within a VSC-HVDC link for power oscillation damping: a robust decentralized approach using homotopy’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 12701279.
    58. 58)
      • 58. Pipelzadeh, Y., Chaudhuri, N.R., Chaudhuri, B., et al: ‘Coordinated control of offshore wind farm and onshore HVDC converter for effective power oscillation damping’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 18601872.
    59. 59)
      • 59. Banerjee, A., Chaudhuri, N.R.: ‘Robust damping of interarea oscillations in AC-MTDC grids using Hinf mixed-sensitivity approach’. IEEE Power and Energy Society General Meeting (PESGM), 2016.
    60. 60)
      • 60. Pipelzadeh, Y., Chaudhuri, N.R., Chaudhuri, B., et al: ‘System stability improvement through optimal control allocation in voltage source converter based high-voltage direct current links’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 811821.
    61. 61)
      • 61. Agnihotri, P., Kulkarni, A.M., Gole, A.M., et al: ‘A robust wide-area measurement based damping controller for networks with embedded multi-terminal and multi-infeed HVDC links’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 38843892.
    62. 62)
      • 62. Smed, T., Andersson, G.: ‘Utilising HVDC to damp power oscillations’, IEEE Trans. Power Deliv., 1993, 8, (2), pp. 620626.
    63. 63)
      • 63. Aouini, R., Marinescu, B., Kilani, K.B., et al: ‘Stability improvement of the interconnection of weak AC zones by synchronverter-based HVDC link’, Electr. Power Syst. Res., 2016, 141, pp. 112114.
    64. 64)
      • 64. Fuchs, A., Andersson, G., Morari, M.: ‘Constraints on HVDC injections in AC networks’. IEEE Power and Energy Society General Meeting, 2016.
    65. 65)
      • 65. Mochamad, R.F., Preece, R.: ‘Impact on model complexity on mixed AC/DC transient stability analysis’. IET Int. Conf. AC and DC Transmission (AC DC 2017), 2017.
    66. 66)
      • 66. Leung Shun, F., Reza, M., Srivastava, K., et al: ‘Influence of VSC-HVDC on transient stability case study of the Belgian grid’. IEEE Power and Energy Society General Meeting (PESGM), 2010.
    67. 67)
      • 67. Sigrist, L., Panciatici, P.: ‘A fundamental study on the impact of HVDC lines on transient stability of power systems’, IEEE Powertech Eindhoven, Eindhoven, Netherlands, 29 June – 2 July 2015.
    68. 68)
      • 68. Liu, C., Chen, Z., Bek, C.L., et al: ‘Transient stability assessment of power system with wind power penetration: the Danish case study’. Int. Conf. Power and Energy, 2012.
    69. 69)
      • 69. Liu, Y., Chen, Z.: ‘Transient voltage stability analysis and improvement of a network with different HVDC systems’. IEEE Power and Energy Society General Meeting (PESGM), 2011.
    70. 70)
      • 70. Christoforidis, P.-A.: ‘The effect of an embedded VSC-HVDC link on the transient stability of the Dutch and German transmission systems’. MSc thesis, Department of Electrical Sustainable Energy, Delft University of Technology, Delft, 2014.
    71. 71)
      • 71. van der Meer, A.A., Gibescu, M., van der Meijden, M.A.M.M.: ‘The effect of FRT behaviour of VSC-HVDC connected offshore wind power plants on AC/DC system dynamics’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 878887.
    72. 72)
      • 72. Ndreko, M., van der Meer, A.A., Gibescu, M., et al: ‘Impact of DC voltage control parameters on AC/DC system dynamics under faulted conditions’. IEEE Power and Energy Society General Meeting (PESGM), 2014.
    73. 73)
      • 73. Li, G., Du, Z., An, T., et al: ‘Impact of PLL and VSC control parameters on the AC/MTDC system stability’, Electr. Power Syst. Res., 2016, 141, pp. 476486.
    74. 74)
      • 74. Arunprasanth, S., Annakkage, U.D., Karawita, C., et al: ‘Impact of VSC-HVDC on AC system generation’. 13th IET Int. Conf. AC and DC Power Transmission (AC DC 2017), February 2017.
    75. 75)
      • 75. Fuchs, A., Morari, M.: ‘Placement of HVDC links for power grid stabilization during transients’, IEEE Powertech Grenoble, Grenoble, France, June 2013.
    76. 76)
      • 76. Alamuti, M.M., Saunders, C.S., Taylor, G.A.: ‘A novel VSC-HVDC active power control strategy to improve AC system stability’. IEEE Power and Energy Society General Meeting (PESGM), 2014.
    77. 77)
      • 77. Fuchs, A., Imhof, M., Demiray, T., et al: ‘Stabilization of large power systems using VSC-HVDC and model predictive control’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 480488.
    78. 78)
      • 78. Sanz, I.M., Chaudhuri, B., Strbac, G.: ‘Coordinated corrective control for transient stability enhancement in future Great Britain transmission system’. 16th Power Systems Computation Conf. (PSCC 16), 2016.
    79. 79)
      • 79. Eriksson, E.: ‘Coordinated control of multi-terminal DC grid power injection for improved rotor-angle stability based Lyapunov theory’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 17891797.
    80. 80)
      • 80. Tang, G., Xu, Z., Dong, H., et al: ‘Sliding mode robust control based active power modulation of multi-terminal HVDC transmissions’, IEEE Trans. Power Syst., 2013, 31, (2), pp. 16141623.
    81. 81)
      • 81. Renedo, J., Cerrada, A.G., Rouco, L.: ‘Active power control strategies for transient stability enhancement of AC/DC grids with VSC-HVDC multi-terminal system’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 45944604.
    82. 82)
      • 82. Renedo, J., Cerrada, A.G., Rouco, L.: ‘Reactive power coordination in VSC-HVDC multi-terminal systems for transient stability improvement’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 37583767.
    83. 83)
      • 83. Salas Bayo, A., Beerten, J., Rimez, J., et al: ‘Analysis and control interactions in multi-infeed VSC-HVDC connections’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13361344.
    84. 84)
      • 84. Xu, L., Fan, L.: ‘Impedance based resonance analysis in a VSC-HVDC system’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 22092216.
    85. 85)
      • 85. Lyn, J., Cai, X., Molinas, M.: ‘Frequency domain stability analysis of MMC based HVDC for wind farm integration’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (1), pp. 141151.
    86. 86)
      • 86. Amin, M., Molinas, M.: ‘Understanding the origin of oscillatory phenomena observed between wind farms and HVDC system’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (1), pp. 378392.
    87. 87)
      • 87. Arai, M.F.M., Mohamed, Y.A.R.I.: ‘Analysis and performance enhancement of vector-controlled VSC in HVDC links connected to very weak grids’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 684693.
    88. 88)
      • 88. Saad, H., Fillion, Y., Deschanvres, S., et al: ‘On resonances and harmonics in HVDC MMC station connected to AC grid’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 15651573.
    89. 89)
      • 89. Saad, H., Mahseredjian, J., Dennetiére, S., et al: ‘Interaction studies of HVDC-MMC link embedded in an AC grid’, Electr. Power Syst. Res., 2016, 138, pp. 202209.
    90. 90)
      • 90. Cheah-Mane, M., Saiz, L., Liang, J., et al: ‘Criterion for the electrical resonance stability of offshore wind power plants connected through HVDC links’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 45794589.
    91. 91)
      • 91. Li, T., Gole, A.M., Zhao, C.: ‘Harmonic instability in MMC-HVDC converters resulting from internal dynamics’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 17381747.
    92. 92)
      • 92. Alawasa, K.M., Mohamed, Y.A.R.I.: ‘Impedance and damping characteristics of grid connected VSCs with power synchronization control strategy’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 952961.
    93. 93)
      • 93. ENTSO-E: ‘Network code on high voltage direct current connections and DC connected power park modules’. Technical Report, Brussels, September 2016.
    94. 94)
      • 94. Haileselassie, T.M., Torres-Olguin, R.E., Vrana, T.K., et al: ‘Main grid frequency support strategy for VSC-HVDC connected wind farm with variable speed wind turbines’, IEEE Powertech Trondheim, Trondheim, Norway, May 2011.
    95. 95)
      • 95. Pipelzadeh, Y., Chaudhuri, B., Green, T.C.: ‘Inertial response from remote offshore wind farms connected through VSC-HVDC links: a communication less scheme’. IEEE Power and Energy Society General Meeting (PESGM), 2012.
    96. 96)
      • 96. Shen, L., Barnes, M., Preece, R., et al: ‘Frequency stabilization using VSC-HVDC’. IEEE Power and Energy Society General Meeting (PESGM), 2016.
    97. 97)
      • 97. Liu, H., Chen, Z.: ‘Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 918926.
    98. 98)
      • 98. Zhu, J., Booth, C.D., Adam, G.P., et al: ‘Inertia emulation control strategy for VSC-HVDC transmission system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12771287.
    99. 99)
      • 99. Junyent-Ferré, A., Pipelzadeh, Y., Green, T.C.: ‘Blending HVDC link energy storage and offshore wind turbine inertia for fast frequency response’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 10591066.
    100. 100)
      • 100. Li, Y., Xu, Z., Ǿstergaard, J., et al: ‘Coordinated control strategies for offshore wind farm integration via VSC-HVDC for system frequency support’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 843856.
    101. 101)
      • 101. Xu, L., Rafferty, J., Wang, Y., et al: ‘MTDC systems for frequency support based on DC voltage manipulation’. IET Int. Conf. Renewable Energy (RPG 2015), 2015.
    102. 102)
      • 102. Silva, B., Moreira, C.L., Seca, L., et al: ‘Provision of inertial and primary frequency control services using offshore multi-terminal HVDC networks’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 800808.
    103. 103)
      • 103. Zhang, W., Rouzbehi, K., Luna, A., et al: ‘Multi-terminal HVDC grids with inertia mimicry capability’, IET Renew. Power Gener. Spec. Issue DC HVDC Syst. Technol., 2016, 10, (6), pp. 752760.
    104. 104)
      • 104. Rouzbehi, K., Zhang, W., Candela, J.I., et al: ‘Unified reference controller for flexible primary control and inertia sharing in multi-terminal voltage source converter-HVDC grids’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 750758.
    105. 105)
      • 105. Haileselassie, T.M., Uhlen, K.: ‘Primary frequency control of remote grids by multi-terminal HVDC’. IEEE Power and Energy Society General Meeting (PESGM), 2010.
    106. 106)
      • 106. Andreasson, M., Wiget, R., Dimarogonas, D.V., et al: ‘Distributed frequency control through MTDC transmission systems’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 250260.
    107. 107)
      • 107. Guan, M., Pan, W., Zhang, J., et al: ‘Synchronous generator emulation control strategy for voltage source converter (VSC) stations’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 30933101.
    108. 108)
      • 108. Sakamuri, J.N., Hussain Rather, Z., Rimez, J., et al: ‘Coordinated voltage control in offshore HVDC connected cluster of wind power plants’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 15921601.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1140
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address