Your browser does not support JavaScript!

Dynamic stability enhancement of TCSC-based tidal power generation using quasi-oppositional harmony search algorithm

Dynamic stability enhancement of TCSC-based tidal power generation using quasi-oppositional harmony search algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents the dynamic and steady state stability improvement of a tidal power generation system (TPGS) assisted power system model (i.e. single machine infinite bus (SMIB) system) using a thyristor controlled series capacitor (TCSC). To achieve this objective, the TCSC used in the studied model is optimally designed using quasi-oppositional harmony search algorithm (QOHSA). The complete dynamic equation of the studied power system is realised based on d–q-axis decomposition. Eigenvalue analysis is performed using the frequency-domain approach to study the steady-state stability while the time-domain-based simulation is carried out to determine the dynamic stability of the studied system. To corroborate the effectiveness of QOHSA, results yielded by this algorithm are compared with those obtained using particle swarm optimisation technique. It may be inferred from the results obtained in this study that the QOHSA tuned TCSC outperforms the other in improving the overall stability of the TPGS-based SMIB system following disturbance. Furthermore, a similar analysis is extended to the TPGS-based multi-machine power system model to validate the efficiency of QOHSA in optimal designing of TCSC for dynamic stability improvement.


    1. 1)
      • 18. Geem, Z.W., Kim, J.H., Loganathan, G.V.: ‘A new heuristic optimization algorithm: harmony search’, Simulations, 2001, 76, (2), pp. 6080.
    2. 2)
      • 34. Banerjee, A., Mukherjee, V., Ghoshal, S.P.: ‘An opposition based harmony search algorithm for engineering optimization problems’, Ain Shams Eng. J., 2014, 5, (1), pp. 85101.
    3. 3)
      • 9. Abd-Elazim, S.M., Ali, E.S.: ‘Optimal location of STATCOM in multimachine power system for increasing loadability by cuckoo search algorithm’, Int. J. Electr. Power Energy Syst., 2016, 80, (1), pp. 240251.
    4. 4)
      • 2. Wang, L., Chao, N.L.: ‘Dynamic stability analysis of a tidal power generation system connected to an onshore distributed system’, IEEE Trans. Energy Convers., 2011, 26, (4), pp. 11911197.
    5. 5)
      • 21. Ali, E.S., Abd-Elazim, S.M., Abdelaziz, A.Y.: ‘Improved harmony algorithm for optimal locations and sizing of capacitors in radial distribution systems’, Int. J. Electr. Power Energy Syst., 2016, 79, (1), pp. 275284.
    6. 6)
      • 33. Poli, R., Kennedy, J., Blackwell, T.: ‘Particle swarm optimization: an overview’, Swarm Intell., 2007, 1, (1), pp. 3357.
    7. 7)
      • 28. Gonzalez-Longatt, F., Wall, P., Terzija, V.: ‘A simplified model for dynamic behaviour of permanent magnet synchronous generator for direct drive wind turbines’. Proc. Int. Conf. on PES PowerTech, Trondheim, June 2011, pp. 17.
    8. 8)
      • 35. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: ‘Opposition versus randomness in soft computing techniques’, Appl. Soft Comput., 2008, 8, (2), pp. 906918.
    9. 9)
      • 32. Eberhart, R., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Proc. 6th Int. Symp. on Micro Machine and Human Science, October 1995, pp. 3943.
    10. 10)
      • 11. Li, B.H., Wu, Q.H., Turner, D.R., et al: ‘Modelling of TCSC dynamics for control and analysis of power system stability’, Int. J. Electr. Power Energy Syst., 2000, 22, (1), pp. 4349.
    11. 11)
      • 30. Ogata, K.: ‘Modern control engineering’ (Prentice Hall, London, 1996).
    12. 12)
      • 24. Shankar, G., Mukherjee, V.: ‘Quasi oppositional harmony search algorithm based controller tuning for load frequency control of multi-source multi-area power system’, Int. J. Electr. Power Energy Syst., 2016, 75, (1), pp. 289302.
    13. 13)
      • 12. Mohammadpour, H.A., Islam, M.M., Santi, E., et al: ‘SSR damping in fixed-speed wind farms using series FACTS controllers’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 7686.
    14. 14)
      • 26. Geng, H., Yang, G., Xu, D., et al: ‘Unified power control for PMSG-based WECS operating under different grid conditions’, IEEE Trans. Energy Convers., 2011, 26, pp. 822830.
    15. 15)
      • 36. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    16. 16)
      • 29. Twining, E., Holmes, D.G.: ‘Grid current regulation of a three-phase voltage source inverter with an LCL input filter’, IEEE Trans. Power Electron., 2003, 18, (3), pp. 888895.
    17. 17)
      • 10. Abd-Elazim, S.M., Ali, E.S.: ‘Synergy of particle optimization and bacteria foraging for TCSC damping controller design’, Int. J. WSEAS Trans. Power Syst., 2013, 8, (2), pp. 7484.
    18. 18)
      • 1. Ahuja, H., Bhuvaneswari, G., Balasubramanian, R.: ‘Performance comparison of DFIG and PMSG based WECS’. Proc. Int. Conf. on IET Renew Power Generation, Edinburgh, UK, September 2011, pp. 68.
    19. 19)
      • 31. Mei, F., Pal, B.C.: ‘Modelling of doubly-fed induction generator for power system stability study’. Proc. IEEE PES General Meeting, Pittsburgh, USA, July 2008, pp. 18.
    20. 20)
      • 22. Tizhoosh, H.R.: ‘Opposition based learning: a new scheme for machine intelligence’. Proc. Int. Conf. on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, November 2005, pp. 695701.
    21. 21)
      • 17. Attia, M.A., Hasanien, H.M., Abdelaziz, A.Y.: ‘Performance enhancement of power systems with wave energy using gravitational search algorithm based TCSC devices’, Int. J. Eng. Sci. Technol., 2016, 19, (1), pp. 16611667.
    22. 22)
      • 14. Nasri, A., Conejo, A.J., Kazempour, S.J., et al: ‘Minimizing wind power spillage using an OPF with FACTS devices’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21502159.
    23. 23)
      • 6. Whitby, B., Ugalde, C.E.: ‘Performance of pitch and stall regulated tidal stream turbines’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 6472.
    24. 24)
      • 7. Rahman, M.L., Shirai, Y.: ‘Hybrid offshore-wind and tidal turbine (HOTT) energy conversion I (6-pulse GTO rectifier and inverter)’. Proc. Int. Conf. on Sustainable Energy Technologies, Singapore, November 2008, pp. 650655.
    25. 25)
      • 4. McCann, G., Thomson, M., Hitchcock, S.: ‘Implications of site-specific conditions on the prediction of loading and power performance of a tidal stream device’. Proc. Int. Conf. on Ocean Energy, Brest, France, October 2008, pp. 19.
    26. 26)
      • 5. Bossanyi, E.A.: ‘GH tidal bladed theory manual’ (Garrad Hassan & Partner Ltd, Bristol, UK, 2009).
    27. 27)
      • 3. Jiang, Y., Rong, M.F., Hua, L.Y.: ‘Variable speed constant frequency tidal current energy generation and control strategy for maximum power point tracking and grid connection’. Proc. Int. Conf. on Sustainable Power Generation and Supply, Nanjing, China, April 2009, pp. 16.
    28. 28)
      • 27. Huang, H., Mao, C., Lu, J., et al: ‘Small signal modelling and analysis of wind turbine with direct drive permanent magnet synchronous generator connected to power grid’, IET Renew. Power Gener., 2012, 6, (1), pp. 4858.
    29. 29)
      • 8. Da, Y., Khaligh, A.: ‘Hybrid offshore wind and tidal turbine energy harvesting system with independently controlled rectifiers’. Proc. Int. Conf. on Industrial Electronics, Porto, Portugal, November 2009, pp. 45774582.
    30. 30)
      • 23. Chatterjee, A., Ghoshal, S.P., Mukherjee, V.: ‘Solution of combined economic and emission dispatch problems of power system by an opposition-based harmony search algorithm’, Int. J. Electr. Power Energy Syst., 2012, 39, (1), pp. 920.
    31. 31)
      • 19. Mahdavi, M., Feshanghary, M., Damangir, E.: ‘An improved harmony search algorithm for solving optimization problems’, Appl. Math. Comput., 2007, 188, (2), pp. 15671579.
    32. 32)
      • 16. Saravanan, M., Slochanal, S.M.R., Venkatesh, P., et al: ‘Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability’, Electric Power Syst. Res., 2007, 77, (3), pp. 276283.
    33. 33)
      • 13. Piyasinghe, L., Miao, Z., Khazaei, J., et al: ‘Impedance model based SSR analysis for TCSC compensated type-3 wind energy delivery systems’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 179187.
    34. 34)
      • 15. Bianchi, F.D., deBattista, H., Mantz, , et alWind turbine control systems: principles, modeling and gain scheduling design’ (Springer, USA, 2007).
    35. 35)
      • 25. Liao, Y., Zhuang, K., Yao, J.: ‘Dual-mode power control strategy simulation study of direct-driven permanent magnet synchronous generator for wind turbine’. Proc. CSEE, 2009, 29, (33), pp. 7682.
    36. 36)
      • 20. Ali, E.S., Abd-Elazim, S.M., Abdelaziz, A.Y.: ‘Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems’, Int. J. Electr. Power Energy Syst., 2016, 80, (1), pp. 252263.

Related content

This is a required field
Please enter a valid email address