http://iet.metastore.ingenta.com
1887

access icon free Reactive power compensation using electric vehicles considering drivers’ reasons

  • XML
    136.07421875Kb
  • HTML
    126.9619140625Kb
  • PDF
    5.368259429931641MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-gtd/12/20/IET-GTD.2017.1114.html;jsessionid=7a6k4br0kf3ur.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-gtd.2017.1114&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Das, R., Thirugnanam, K., Kumar, P., et al: ‘Mathematical modeling for economic evaluation of electric vehicle to smart grid interaction’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 712721.
    2. 2)
      • 2. Quiros-Tortos, J., Ochoa, L.F., Alnaser, S.W., et al: ‘Control of EV charging points for thermal and voltage management of LV networks’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 30283039.
    3. 3)
      • 3. García-Villalobos, J., Zamora, I., Knezović, K., et al: ‘Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks’, Appl. Energy, 2016, 180, pp. 155168.
    4. 4)
      • 4. Yuan, X., Li, L., Gou, H., et al: ‘Energy and environmental impact of battery electric vehicle range in China’, Appl. Energy, 2015, 157, pp. 7584.
    5. 5)
      • 5. Boynuegri, A.R., Vural, B., Tascikaraoglu, A., et al: ‘Voltage regulation capability of a prototype static VAr compensator for wind applications’, Appl. Energy, 2012, 93, (5), pp. 422431.
    6. 6)
      • 6. Nimpitiwan, N., Chaiyabut, C.: ‘Centralized control of system voltage/reactive power using genetic algorithm’. Int. Conf. Intelligent Systems Applications To Power Systems, 2007, pp. 16.
    7. 7)
      • 7. Zhang, W., Liu, Y.: ‘Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm’, Int. J. Electr. Power Energy Syst., 2008, 30, (9), pp. 525532.
    8. 8)
      • 8. Kargarian, A., Raoofat, M., Mohammadi, M.: ‘Reactive power market management considering voltage control area reserve and system security’, Appl. Energy, 2011, 88, (11), pp. 38323840.
    9. 9)
      • 9. Savić, A., Đurišić, Ž.: ‘Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants’, Appl. Energy, 2014, 134, pp. 114124.
    10. 10)
      • 10. Sun, Y.L., Liu, W.Y., Wang, N.B., et al: ‘The coordination control method of dynamic reactive power compensation equipment based multi-objective’, Adv. Mater. Res., 2013, 724–725, pp. 635640.
    11. 11)
      • 11. Liu, L., Wu, Z., Li, H.: ‘A single-stage grid-connected inverter with wide range reactive power compensation using energy storage system (ESS)’. IEEE Applied Power Electronics Conf. Exposition, 2010, pp. 223230.
    12. 12)
      • 12. Aly, M.M., Abdel-Akher, M., Said, S.M., et al: ‘A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 485494.
    13. 13)
      • 13. Bai, L., Jiang, T., Li, F., et al: ‘Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability’, Appl. Energy, 2017, 210, pp. 10821091.
    14. 14)
      • 14. Hashemi, S., Ostergaard, J., Yang, G.: ‘Effect of reactive power management of PV inverters on need for energy storage’. IEEE Photovoltaic Specialists Conf., 2013, pp. 23042308.
    15. 15)
      • 15. Wang, W., He, W., Cheng, J., et al: ‘Active and reactive power coordinated control strategy of battery energy storage system in active distribution network’. IEEE Automation., 2017.
    16. 16)
      • 16. Gandhi, O., Rodríguez-Gallegos, C.D., Zhang, W., et al: ‘Economic and technical analysis of reactive power provision from distributed energy resources in microgrids’, Appl. Energy, 2017, 210, pp. 827841.
    17. 17)
      • 17. Amini, M.H., Moghaddam, M.P., Karabasoglu, O.: ‘Simultaneous allocation of electric vehicles’ parking lots and distributed renewable resources in smart power distribution networks’, Sustain. Cities Soc., 2017, 28, pp. 332342.
    18. 18)
      • 18. Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: ‘EV/PHEV bidirectional charger assessment for V2G reactive power operation’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 57175727.
    19. 19)
      • 19. Melhorn, A.C., Mckenna, K., Keane, A., et al: ‘Autonomous plug and play electric vehicle charging scenarios including reactive power provision: a probabilistic load flow analysis’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 768775.
    20. 20)
      • 20. Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: ‘Reactive power operation analysis of a single-phase EV/PHEV bidirectional battery charger’. IEEE Int. Conf. Power Electronics & ECCE Asia, 2011, pp. 585592.
    21. 21)
      • 21. Kisacikoglu, M.C., Kesler, M., Tolbert, L.M.: ‘Single-phase on-board bidirectional PEV charger for V2G reactive power operation’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 767775.
    22. 22)
      • 22. Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: ‘Examination of a PHEV bidirectional charger system for V2G reactive power compensation’, IEEE Applied Power Electronics Conference and Exposition, Palm Springs, CA, USA, February2010, pp. 458465.
    23. 23)
      • 23. Mojdehi, M.N., Ghosh, P.: ‘Modeling and revenue estimation of EV as reactive power service provider’. IEEE Pes General Meeting | Conf. and Exposition., 2014, pp. 15.
    24. 24)
      • 24. Carradore, L., Turri, R.: ‘Electric vehicles participation in distribution network voltage regulation’. IEEE Universities Power Engineering Conf., 2010, pp. 16.
    25. 25)
      • 25. Rogers, K.M., Klump, R., Khurana, H., et al: ‘Smart-Grid -enabled load and distributed generation as a reactive resource’. IEEE Innovative Smart Grid Technologies., 2010, pp. 18.
    26. 26)
      • 26. Mojdehi, M.N., Ghosh, P.: ‘An on-demand compensation function for an EV as a reactive power service provider’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 45724583.
    27. 27)
      • 27. Wu, C., Mohsenian-Rad, H., Huang, J., et al: ‘PEV-based combined frequency and voltage regulation for smart grid’. IEEE Innovative Smart Grid Technologies, 2012, pp. 16.
    28. 28)
      • 28. Yu, T., Yao, X.P., Wang, M., et al: ‘A reactive power evaluation model for EV chargers considering travelling behaviors’. IEEE Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies, 2016.
    29. 29)
      • 29. Mitsukuri, Y., Hara, R., Kita, H., et al: ‘Validation of voltage regulation method in distribution system utilizing electric vehicles’, Proc. Am. Control Conf., 2012, 1, (6), pp. 17.
    30. 30)
      • 30. Mitsukuri, Y., Hara, R., Kita, H., et al: ‘Study on voltage regulation in a distribution system using electric vehicles–optimal real and reactive power dispatch by centralized control’, J. Int. Council Electr. Eng., 2013, 3, (2), pp. 134140.
    31. 31)
      • 31. Mitsukuri, Y., Hara, R., Kita, H., et al: ‘Study on voltage regulation in distribution system using electric vehicles–control method considering dynamic behavior’, J. Int. Council Electr. Eng., 2014, 4, (2), pp. 121129.
    32. 32)
      • 32. Mitsukuri, Y., Hara, R., Kita, H., et al: ‘Voltage regulation in distribution system utilizing electric vehicles and communication’, Am. J. Obstetrics Gynecol., 2012, 207, (6), pp. 16.
    33. 33)
      • 33. Su, S., Jiang, J.C., Wang, W., et al: ‘An autonomous decentralized voltage control scheme in PEV charging devices on the distribution network– reactive power compensation for voltage decreases caused by household loads and charging devices’, Int. Trans. Electr. Energy Syst., 2014, 24, (3), pp. 412432.
    34. 34)
      • 34. Su, S., Hu, Y., Wang, W., et al: ‘Voltage regulation strategy for distribution network based on reactive power compensation of electric vehicles’, Autom. Electr. Power Syst., 2017, 41, (10), pp. 7281.
    35. 35)
      • 35. Nakamura, Y., Mitsukuri, Y., Iguchi, M., et al: ‘Study of economic system at compensation for voltage drop utilizing charging power adjustment of electric vehicles’. IEEE Power and Energy Engineering Conf., 2014.
    36. 36)
      • 36. Zhang, P., Qian, K., Zhou, C., et al: ‘A methodology for optimization of power systems demand due to electric vehicle charging load’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 16281636.
    37. 37)
      • 37. Chen, L., Chung, C.Y., Nie, Y., et al: ‘Modeling and optimization of electric vehicle charging load in a parking lot’. IEEE Power and Energy Engineering Conf., 2013, pp. 15.
    38. 38)
      • 38. Pasaoglu, G., Thiel, C., Martino, A.: ‘Projections for electric vehicle load profiles in Europe based on travel survey data’, 2013.
    39. 39)
      • 39. Li, B., Lü, L., Liu, Y., et al: ‘Optimal configuration of controllable active-reactive power resources in active distribution network considering photovoltaic access uncertainty’, Power Syst. Technol., 2017, 41, (2), pp. 355362.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1114
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address