http://iet.metastore.ingenta.com
1887

Circulating current suppression with improved DC-link power quality for modular multilevel converter

Circulating current suppression with improved DC-link power quality for modular multilevel converter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Despite having more advantages, a modular multilevel converter (MMC) has a circulating current as one of its main drawbacks that augments arm current greatly. However, circulating current suppression (CCS) of the conventional MMC will deteriorate the power quality of direct current (DC)-link voltage. This study proposes the CCS by applying the three-winding transformer and a DC–alternating current CCS inverter. The mathematical models of the proposed MMC and circulating current are analysed in detail. The parameter setting of the three-winding transformer is also discussed and is set to have an equivalent arm inductance of the conventional MMC to make comparisons. The comparing results validate that the proposed MMC can exhibit much better performance under steady and dynamic conditions. The significant DC-link voltage ripple that exists in the conventional MMC does not appear. The mean-square-error values of DC-link voltage have more than 90 per cent improvement under steady and dynamic conditions. Due to this contribution, the proposed MMC can provide better DC-link power quality.

References

    1. 1)
      • 1. Ilves, K., Harnefors, L., Norrga, S., et al: ‘Predictive sorting algorithm for modular multilevel converters minimizing the spread in the submodule capacitor voltages’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 440449.
    2. 2)
      • 2. Fehr, H., Gensior, A., Müller, M.: ‘Analysis and trajectory tracking control of a modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 398407.
    3. 3)
      • 3. Vidal-Albalate, R., Beltran, H., Rolan, A., et al: ‘Analysis of the performance of MMC under fault conditions in HVDC-based offshore wind farms’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 839847.
    4. 4)
      • 4. Jiangchao, Q., Saeedifard, M.: ‘Predictive control of a modular multilevel converter for a back-to-back HVDC system’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15381547.
    5. 5)
      • 5. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. 2003 IEEE Bologna Power Tech Conf., Bologna, Italy, 23–26 June, 2003.
    6. 6)
      • 6. Luo, L., Zhang, Y., Jia, L., et al: ‘A novel method based on self-power supply control for balancing capacitor static voltage in mmc’, IEEE Trans. Power Electron., 2017, PP, (99), pp. 11.
    7. 7)
      • 7. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
    8. 8)
      • 8. Saad, H., Dennetière, S., Mahseredjian, J., et al: ‘Modular multilevel converter models for electromagnetic transients’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14811489.
    9. 9)
      • 9. Qingrui, T., Zheng, X., Lie, X.: ‘Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 20092017.
    10. 10)
      • 10. Rohner, S., Bernet, S., Hiller, M., et al: ‘Analysis and simulation of a 6 kv, 6 mva modular multilevel converter’. 2009 35th Annual Conf. of IEEE Industrial Electronics, Porto, 3–5 November, 2009, pp. 225230.
    11. 11)
      • 11. Qiang, S., Wenhua, L., Xiaoqian, L., et al: ‘A steady-state analysis method for a modular multilevel converter’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 37023713.
    12. 12)
      • 12. Zhang, M., Huang, L., Yao, W., et al: ‘Circulating harmonic current elimination of a CPS-PWM-based modular multilevel converter with a plug-in repetitive controller’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20832097.
    13. 13)
      • 13. Pou, J., Ceballos, S., Konstantinou, G., et al: ‘Circulating current injection methods based on instantaneous information for the modular multilevel converter’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 777788.
    14. 14)
      • 14. Ilves, K., Antonopoulos, A., Norrga, S., et al: ‘Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 5768.
    15. 15)
      • 15. Xu, S., Huang, A., Xijun, N., et al: ‘AC circulating currents suppression in modular multilevel converter’. IECON 2012–38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, Quebec, Canada, 25–28 October, 2012, pp. 191196.
    16. 16)
      • 16. Yang, H., Saeedifard, M.: ‘A capacitor voltage balancing strategy with minimized ac circulating current for the DC–DC modular multilevel converter’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 956965.
    17. 17)
      • 17. Wang, J., Liang, J., Wang, C., et al: ‘Circulating current suppression for MMC-HVDC under unbalanced grid conditions’, IEEE Trans. Ind. Appl., 2017, PP, (99), pp. 11.
    18. 18)
      • 18. Briz, F., Degner, M.W., Lorenz, R.D.: ‘Analysis and design of current regulators using complex vectors’, IEEE Trans. Ind. Appl., 2000, 36, (3), pp. 817825.
    19. 19)
      • 19. Casanellas, F.: ‘Losses in PWM inverters using IGBTS’, IEE Proc. – Electr. Power Appl., 1994, 141, (5), pp. 235239.
    20. 20)
      • 20. Kay, S.M.: ‘Fundamentals of statistical signal processing’ (Prentice Hall PTR, 1993), pp. 1920.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1109
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1109
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address