access icon free Imprecise reliability assessment of generating systems involving interval probability

Probabilistic information about random variables describing equipment's reliability is not complete when there is a lack of statistical data about failure. The traditional reliability assessment cannot deal with the incomplete probabilistic information. Interval probability is an efficient method to address the incomplete probabilistic information. The interval value of reliability indices can reflect the degree of completeness of probabilistic information. In this study, the optimisation model of generating systems’ imprecise reliability assessment (IRA) is established and the efficient unit-adding algorithm is proposed to obtain the upper and lower bounds of reliability indices. The probability density and the expectation of reliability indices are also calculated by the Monte Carlo simulation method. In the process of IRA, massive calculations of the traditional reliability are needed, therefore the recursive convolution algorithm, which is based on the outage capacity table and has the merit of high-computation efficiency, is adopted. A case study on a revised IEEE-RTS79 system shows the rationality and equity of the presented method.

Inspec keywords: convolution; probability; power generation reliability; Monte Carlo methods

Other keywords: IEEE-RTS79 system; interval probability; lower bounds; unit-adding algorithm; random variables; Monte Carlo simulation method; reliability indices; IRA; outage capacity table; equipment reliability; upper bounds; probability density; recursive convolution algorithm; lower boundsoptimisation model; imprecise reliability assessment; probabilistic information; generating systems

Subjects: Reliability; Monte Carlo methods

References

    1. 1)
      • 19. Benidris, M., Mitra, J.: ‘Reliability and sensitivity analysis of composite power systems considering voltage and reactive power constraints’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 12451253.
    2. 2)
      • 22. Li, W., Zhou, J., Xie, K., et al: ‘Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 336343.
    3. 3)
      • 33. Walley, P.: ‘Statistical reasoning with imprecise probabilities’ (Chapman and Hall, London, 1991).
    4. 4)
      • 25. Wei, X., Zhu, J., Huang, Y.: ‘Distribution network short-term reliability assessment based on interval numbers’. IEEE Int. Conf. on Power System Technology, Wollongong, NSW, Australia, 2016, pp. 16.
    5. 5)
      • 7. Lei, H., Singh, C.: ‘Power system reliability evaluation considering cyber-malfunctions in substations’, Electr. Power Syst. Res., 2015, 129, pp. 160169.
    6. 6)
      • 8. Zhang, Y., Wang, L., Xiang, Y., et al: ‘Power system reliability evaluation with SCADA cybersecurity considerations’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 17071721.
    7. 7)
      • 3. Xie, K., Billinton, R., Zhou, J.: ‘Tracing the unreliability contributions of power system components’, Electr. Power Compon. Syst., 2008, 36, (12), pp. 12991309.
    8. 8)
      • 27. Lovric, M.: ‘International encyclopedia of statistical science’ (Springer, Berlin, Heidelberg, 2011).
    9. 9)
      • 20. Lu, J., Sun, L., Li, Q., et al: ‘Research on sensitivity analysis method of large-scale grid reliability based on circuit outage model’. IEEE PES Asia-Pacific Power and Energy Engineering Conf., Hong Kong, 2014, pp. 16.
    10. 10)
      • 14. Wang, W., Xiong, J., Xie, M.: ‘A study of interval analysis for cold-standby system reliability optimization under parameter uncertainty’, Comput. Ind. Eng., 2016, 97, pp. 93100.
    11. 11)
      • 5. Čepin, M.: ‘Assessment of power system reliability: methods and applications’ (Springe, London, 2011).
    12. 12)
      • 31. Coolen, F.P., Coolen-Maturi, T.: ‘The structure function for system reliability as predictive (imprecise) probability’, Reliab. Eng. Syst. Saf., 2016, 154, pp. 180187.
    13. 13)
      • 23. Zhang, P., Wang, S.: ‘A novel interval method for reliability evaluation of large scale distribution system’. Proc. CSEE, 2004, vol. 24, no. 3, pp. 7784, in Chinese.
    14. 14)
      • 16. Zhao, Y., Yuan, R., Lu, J., et al: ‘Analytical approach and nonparametric kernel estimation to compute probability distributions for reliability indices of distribution systems’, Autom. Electr. Power Syst., 2014, 38, (1), pp. 3843, in Chinese.
    15. 15)
      • 34. Rubinstein, R.Y.: ‘Simulation and the Monte Carlo method’ (John Wiley & Sons, Hoboken, 2017, 3rd edn.).
    16. 16)
      • 17. Billinton, R., Wangdee, W.: ‘Utilizing bulk electric system reliability performance index probability distributions in a performance based regulation framework’. Int. Conf. on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 2006, pp. 16.
    17. 17)
      • 30. Ahmed, M.A., Muzaffar, Z.: ‘Handling imprecision and uncertainty in software development effort prediction: a type-2 fuzzy logic based framework’, Inf. Softw. Technol., 2009, 51, (3), pp. 640654.
    18. 18)
      • 36. Billinton, R., Allan, R.N., Abdel-Gawad, N.M.K.: ‘The IEEE reliability test system - extensions to and evaluation of the generating system’, IEEE Trans. Power Syst., 1986, 1, (4), pp. 17.
    19. 19)
      • 26. Feng, Y., Wu, W., Zhang, B., et al: ‘Power system operation risk assessment using credibility theory’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13091318.
    20. 20)
      • 4. Li, W.: ‘Risk assessment of power systems: models, methods, and applications’ (IEEE Press, Wiley, Hoboken, 2014, 2nd edn.).
    21. 21)
      • 11. Alvarez, D.A., Hurtado, J.E.: ‘An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs’, Comput. Struct., 2014, 142, pp. 5463.
    22. 22)
      • 13. Troffaes, M.C., Walter, G., Kelly, D.: ‘A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models’, Reliab. Eng. Syst. Saf., 2014, 125, pp. 1321.
    23. 23)
      • 15. Jirutitijaroen, P., Singh, C.: ‘Comparison of simulation methods for power system reliability indexes and their distributions’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 486493.
    24. 24)
      • 10. He, Y., Mirzargar, M., Kirby, R.M.: ‘Mixed aleatory and epistemic uncertainty quantification using fuzzy set theory’, Int. J. Approx. Reason., 2015, 66, pp. 115.
    25. 25)
      • 6. Kavousifard, A., Samet, H.: ‘Consideration effect of uncertainty in power system reliability indices using radial basis function network and fuzzy logic theory’, Neurocomputing, 2011, 74, (17), pp. 34203427.
    26. 26)
      • 9. Purba, J.H., Tjahyani, D.S., Ekariansyah, A.S., et al: ‘Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty’, Ann. Nucl. Energy, 2015, 85, pp. 11891199.
    27. 27)
      • 29. Choi, H.H., Seo, J.: ‘Safety assessment using imprecise reliability for corrosion-damaged structures’, Computer-Aided Civ. Infrastruct. Eng., 2009, 24, (4), pp. 293301.
    28. 28)
      • 12. Jiang, C., Zhang, Z., Han, X., et al: ‘A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty’, Comput. Struct., 2013, 129, pp. 112.
    29. 29)
      • 18. Li, S., Ma, Y., Hua, Y., et al: ‘Reliability equivalence and sensitivity analysis to UHVDC systems based on the matrix description of the F&D method’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 456464.
    30. 30)
      • 2. Billinton, R., Li, W.: ‘Reliability assessment of electrical power systems using Monte Carlo methods’ (Plenum Press, New York, 1994).
    31. 31)
      • 1. Utkin, L.V., Coolen, F.P.: ‘Imprecise reliability: an introductory overview’, Comput. Intell. Reliab. Eng., 2007, 2, pp. 261306.
    32. 32)
      • 32. Utkin, L.V.: ‘Imprecise reliability of cold standby systems’, Int. J. Qual. Reliab. Manage., 2003, 20, (6), pp. 722739.
    33. 33)
      • 35. Guo, P., Tanaka, H.: ‘On interval probabilities’, in Huynh, V., Nakamori, Y., Lawry, J., Inuiguchi, M. (Ed.): ‘Advances in intelligent and soft Computing’ (Springer, Berlin, Heidelberg, 2010).
    34. 34)
      • 24. Zhang, P., Li, W., Wang, S.: ‘Reliability-oriented distribution network reconfiguration considering uncertainties of data by interval analysis’, Int. J. Electr. Power Energy Syst., 2012, 34, (1), pp. 138144.
    35. 35)
      • 28. Utkin, L.V., Kozine, I.: ‘On new cautious structural reliability models in the framework of imprecise probabilties’, Struct. Saf., 2010, 32, (6), pp. 411416.
    36. 36)
      • 21. Li, W., Zhou, J., Lu, J., et al: ‘Incorporating a combined fuzzy and probabilistic load model in power system reliability assessment’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 13861388.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0874
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0874
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading