access icon free Proposed heptagon graph for DGA interpretation of oil transformers

Dissolved gas analysis (DGA) is one of the most acceptable methods used for detecting and evaluating gases dissolved in mineral oil and also in the solid insulation of internal incipient faults in the power and distribution transformers based on the oil samples. DGA has been proved the most accurate method for condition assessment of power and distribution transformers. The fault types depend upon type and concentrations of each gas dissolved in oil. IEC, Rogers, Doernenburg and Duval techniques, in spite of their importance in diagnosing certain types of faults, do not consider the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) to evaluate cellulose insulation degradation. Some of these techniques do not take into account the impact of ethane (C2H6) and hydrogen (H2) for the evaluation of fault types. A new graphical method “Heptagon” based on seven gases produced in faulty transformer oil decomposition is presented. Based on about 452 test samples of transformer oil DGA, the Heptagon figure is drawn and the zones of different fault types are determined. The suggested technique is tested and compared with other techniques.

Inspec keywords: chemical analysis; minerals; power transformer insulation; condition monitoring; transformer oil

Other keywords: solid insulation; oil transformers; hydrogen impact; carbon monoxide concentrations; DGA interpretation; power transformers; carbon dioxide concentrations; dissolved gas analysis; condition assessment; distribution transformers; heptagon graph; mineral oil; cellulose insulation degradation; internal incipient faults; ethane impact

Subjects: Organic insulation; Transformers and reactors

References

    1. 1)
      • 26. Lu, W., Liu, Q.: ‘Effect of cellulose particles on impulse breakdown in ester transformer liquids in uniform electric fields’, IEEE Dielectr. Electr. Insul. Soc., 2015, 22, (5), pp. 25542564.
    2. 2)
      • 27. Gouda, O.E., Saleh, S.M., EL-Hoshy, S.H.: ‘Power transformer incipient faults diagnosis based on dissolved gas analysis’, Telkomnika Indonesian J. Electr. Eng., 2016, 17, (1), pp. 1016.
    3. 3)
      • 15. Wu, H., Li, X., Wu, D.: ‘RMP neural network based dissolved gas analyzer for fault diagnostic of oil-filled electrical equipment’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, pp. 495498.
    4. 4)
      • 22. Baburao, K., Bhangre, N.M., Wagle, A.M., et al: ‘The experience of DP and furan in remnant life assessment of power transformer, condition monitoring and diagnosis’. Int. Conf. Condition Monitoring and Diagnosis, CMD, 2008, pp. 555558.
    5. 5)
      • 30. Barraclough, B., Bayley, E., Davies, I., et al: ‘CEGB experience of the analysis of dissolved gas in transformer oil for the diction of incipient faults’. IEE Conf. on Diagnostic testing of High Voltage Power Apparatus in Service, 6–8 March 1973.
    6. 6)
      • 36. Egyptian Electricity Holding Company (EEHC) Reports, 1991–2016.
    7. 7)
      • 7. Duval, M.: ‘A review of faults detectable by gas-in-oil analysis in transformers’, IEEE Electr. Insul. Mag., 2002, 18, (3), pp. 817.
    8. 8)
      • 29. Cardwell, G.R.: ‘Oil testing and dissolved gas analysis for identifying faults in power transformers’, Electron, 1989, 5, pp. 1217.
    9. 9)
      • 21. Wouters, P.A.A.F., van Schijndel, A., Wetzer, J.M.: ‘Remaining lifetime modeling of power transformers: individual assets and fleets’, IEEE Electr. Insul. Mag., 2011, 27, (3), pp. 4551.
    10. 10)
      • 20. Wensheng, G., Cuifen, B., Tong, L.A.: ‘Dynamic integrated fault diagnosis method for power transformers’, Sci. World J., 2015, 2015, (2015), pp. 18.
    11. 11)
      • 6. ANSI/IEEE Std. C57.104–1991: ‘IEEE guide for the interpretation of gases generated in oil- immersed transformers’ (IEEE Power Engineering Society, 1992).
    12. 12)
      • 9. Sivasarma, D., Kalyani, G.: ‘ANN approach for condition monitoring of power transformers using DGA’, IEEE Electr. Insul. Mag., 2002, 18, (6), pp. 2638.
    13. 13)
      • 18. Van Le, N.: ‘Application of artificial intelligence in diagnosis of power transformer incipient faults’. Proc. 26th IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE ‘13), Regina, Canada, IEEE, 2013, pp. 14.
    14. 14)
      • 14. Nemeth, B.S., Laboncz, I.K., Csepes, G.: ‘Transformer condition analyzing expert system using fuzzy neural system’. IEEE Int. Symp. on Electrical Insulation (ISEI), 2010.
    15. 15)
      • 1. Duval, M., de Pablo, A.: ‘Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases’, IEEE Electr. Insul. Mag., 2001, 17, (2), pp. 3141.
    16. 16)
      • 33. Duval, M.: ‘New techniques for dissolved gas-in-oil analysis’, IEEE Electr. Insul. Mag., 2003, 19, pp. 615.
    17. 17)
      • 24. I.E.E.E Std.: ‘Degradation of cellulosic electrical paper insulation in oil-filled transformers’, IEEE Proc. Sci. Meas. Technol., 1994, 141, (5), pp. 324334.
    18. 18)
      • 32. Rouse, T.O.: ‘Mineral insulating oil in transformers’, IEEE Electr. Insul. Mag., 1998, 14, (3), pp. 616.
    19. 19)
      • 16. Ibrahim, M.M., Sayed, M.M., Abu El-Zahab, E.E.: ‘Diagnosis of power transformer incipient faults using fuzzy logic-IEC based approach’. IEEE Int. Energy Conf. (ENERGYCON ‘14), 2014, pp. 242245.
    20. 20)
      • 5. Andri, F., Tapan, K.S.: ‘Oil-immersed power transformers condition diagnosis with limited dissolved gas analysis (DGA) data’. Australasian University Power Engineering Conf. (AUPEC), 2008, 073.
    21. 21)
      • 2. IEC60599: ‘Mineral oil-impregnated electrical equipment in service-guide to the interpretation of dissolved and free gases analysis’, 1999.
    22. 22)
      • 3. IEEE Std. C57.104: ‘IEEE guide for the interpretation of gases generated in oil-immersed transformers’, 2008.
    23. 23)
      • 8. Rogers, R.R.: ‘IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis’, IEEE Trans. Electr. Insul., 1978, EI-13, pp. 349354.
    24. 24)
      • 35. Narang, E., Shivanisehgal, E.: ‘Fault detection techniques for maintenance using dissolved gas analysis’, Int. J. Eng. Res. Technol., 2012, 1, (6), pp. 0107.
    25. 25)
      • 12. Islam, S.M., Wu, T., Ledwich, G.: ‘A novel fuzzy logic approach to transformer fault diagnosis’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, pp. 177186.
    26. 26)
      • 34. Abu-Saia, A., Islam, S.: ‘A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, pp. 10071012.
    27. 27)
      • 11. Diaa-Eldin, A.: ‘A new graphical technique for the interpretation of dissolved gas analysis in power transformers’. 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Montreal, QC, Canada, October 2012, pp. 195198.
    28. 28)
      • 25. Cheim, L., Dupont, C.: ‘The correlation between 2-furfural and DP, A new transformer ageing model’ (Doble Engineering Company, 2004).
    29. 29)
      • 23. Emsley, A.M., Xiao, X., Heywood, R.J., et al: ‘Degradation of cellulosic insulation in power transformers – part 2: formation of furan products in insulating oil’, IEE Proc. Sci. Meas. Technol., 2000, 147, (3), pp. 110114.
    30. 30)
      • 19. Huang, Y.C., Sun, H.C.: ‘Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (3), pp. 974981.
    31. 31)
      • 28. John, C., Drotos, J., Porter, W.: ‘Dissolved gas analysis of transformer oil’ (S.D. Meyers Co., 1996).
    32. 32)
      • 10. Duval, M., Dukaram, J.: ‘Improving the reliability of the transformer gas-in-oil diagnosis’, IEEE Electr. Insul. Mag., 2005, 21, (4), pp. 2127.
    33. 33)
      • 13. Izzularab, M.A., Ally, G.E.M., Mansour, D.A.: ‘On-line diagnosis of incipient faults and cellulose degradation based on artificial intelligence methods’. IEEE Int. Conf. on Solid Dielectrics (ICSD), 2004, pp. 767770.
    34. 34)
      • 4. ‘IEC 60567: ‘Oil-filled electrical equipment, sampling of gases and of oil for analysis of free and dissolved gases Guidance’ (IEC standard, 2005).
    35. 35)
      • 17. Zhao, A., Tang, X., Zhang, Z., et al: ‘The DGA interpretation method using relative content of characteristic gases and gas-ratio combinations for fault diagnosis of oil-immersed power transformers’. Proc. Int. Conf. on Electrical Insulating Materials (ISEIM ‘14), Niigata, 2014, pp. 124127.
    36. 36)
      • 31. Rogers, R.R.: ‘U.K. experiences in the interpretation of incipient faults in power transformers by dissolved gas-in-oil chromatography analysis (A progress report)’. Minutes of 42nd Int. Conf. of Double Clients, 1975, section 10-201.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0826
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0826
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading