Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free New adaptive and centralised under-voltage load shedding to prevent short-term voltage instability

This study proposes a new adaptive and centralised under-voltage load shedding (UVLS) to prevent short-term voltage instability; it then examines the challenges related to the centralised UVLS. The proposed method uses a local measurement to estimate the amount of load shedding. It decreases the amount of load shedding by selecting the proper location of UVLS and shedding more powers within seconds after activating UVLS. Dynamic simulations are performed on the IEEE 118-bus test system, New England test system, and on Isfahan regional power grid (IRPG) as the case studies. Simulation results, when compared with the conventional multi-port network model and sensitivity-based methods, provide a considerable reduction in the active power shedding in addition to the number of the load shedding steps. Moreover, it indicates that the measurement bias errors have a considerable effect on UVLS. Finally, a method is introduced to overcome the effect of measurement errors.

References

    1. 1)
      • 23. Shi, D., Tylavsky, D.J., Logic, N.: ‘An adaptive method for detection and correction of errors in PMU measurements’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 15751583.
    2. 2)
      • 9. Derafshian, M., Amjady, N., Dehghan, S.: ‘Special protection scheme against voltage collapse’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 341351.
    3. 3)
      • 12. Nikolaidis, V.C., Vournas, C.D.: ‘Design strategies for load-shedding schemes against voltage collapse in the Hellenic system’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 582591.
    4. 4)
      • 4. Leon, J.A.D.d., Taylor, C.W.: ‘Understanding and solving short-term voltage stability problems’. IEEE PES Summer Meeting, 2002, pp. 745752.
    5. 5)
      • 16. Modarresi, J., Gholipour, E., Khodabakhshian, A.: ‘A comprehensive review of the voltage stability indices’, Renew. Sust. Energy Rev., 2016, 63, pp. 112.
    6. 6)
      • 21. Junjie, T., Junqi, L., Ponci, F., et al: ‘Adaptive load shedding based on combined frequency and voltage stability assessment using synchrophasor measurements’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 20352047.
    7. 7)
      • 28. IEEE Std.C37.118.1-2011 (Revision of IEEE Std C37.118-2005): ‘IEEE standards for synchrophasor measurments for power systems’, 2011.
    8. 8)
      • 14. Xu, Y., Dong, Z.Y., Luo, F., et al: ‘Parallel-differential evolution approach for optimal event-driven load shedding against voltage collapse in power systems’, IET Gener. Transm. Distrib., 2014, 8, (4), pp. 651660.
    9. 9)
      • 13. Wang, Y., Pordanjani, I.R., Li, W., et al: ‘Strategy to minimise the load shedding amount for voltage collapse prevention’, IET Gener. Transm. Distrib., 2011, 5, (3), pp. 307313.
    10. 10)
      • 26. Pai, M.A.: ‘Energy function analysis for power system stability’ (Kluwer, Boston, MA, USA, 1989).
    11. 11)
      • 10. Shubhanga, K.N., Kulkarni, A.M.: ‘Determination of effectiveness of transient stability controls using reduced number of trajectory sensitivity computations’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 437482.
    12. 12)
      • 5. Lei, J., Li, Y., Zhang, B., et al: ‘A WAMS based adaptive load shedding control strategy using a novel index of transient voltage stability’. Chinese Control Conf., 2014, pp. 81648169.
    13. 13)
      • 33. Chenine, M., Nordstrom, L.: ‘Modeling and simulation of wide-area communication for centralized PMU-based applications’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 13721380.
    14. 14)
      • 2. Otomega, B., Cutsem, T.V.: ‘A load shedding scheme against both short- and long-term voltage instabilities in the presence of induction motors’. IEEE Trondheim Power Tech, 2011, pp. 17.
    15. 15)
      • 15. Dalali, M., Karegar, H.K.: ‘Modified Thevenin-based voltage instability indicator and load shedding approach for MCF connected network’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 17451753.
    16. 16)
      • 6. Mahari, A., Seyedi, H.: ‘A wide area synchrophasor-based load shedding scheme to prevent voltage collapse’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 248257.
    17. 17)
      • 11. Arief, A., Dong, Z., Nappu, M.B., et al: ‘Under voltage load shedding in power systems with wind turbine-driven doubly fed induction generators’, Electr. Power Syst. Res., 2013, 96, pp. 91100.
    18. 18)
      • 3. Ladhani, S.S., Rosehart, W.: ‘Under voltage load shedding for voltage stability overview of concepts and principles’. IEEE Power Engineering Society General Meeting, 2004, pp. 15971602.
    19. 19)
      • 31. Mollah, K., Bahadornejad, M., Nair, N.K.C., et al: ‘Automatic under-voltage load shedding: a systematic review’. IEEE Power and Energy Society General Meeting, 2012, pp. 17.
    20. 20)
      • 20. Wang, J., Zhang, H., Zhou, Y.: ‘Intelligent under frequency and under voltage load shedding method based on the active participation of smart appliances’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 353361.
    21. 21)
      • 25. Amraee, T., Ranjbar, A.M., Feuillet, R.: ‘Adaptive under-voltage load shedding scheme using model predictive control’, Electr. Power Syst. Res., 2011, 81, (7), pp. 15071513.
    22. 22)
      • 22. Meliopoulos, A.P.S., Cokkinides, G.J., Galvan, F., et al: ‘GPS-Synchronized data acquisition: technology assessment and research issues’. Hawaii Int. Conf. System Sciences, 2006, pp. 19.
    23. 23)
      • 30. Abed, A.M.: ‘WSCC voltage stability criteria, undervoltage load shedding strategy, and reactive power reserve monitoring methodology’. IEEE Power Engineering Society Meeting, 1999, pp. 191197.
    24. 24)
      • 18. Otomega, B., Glavic, M., Cutsem, T.V.: ‘Distributed undervoltage load shedding’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 22832284.
    25. 25)
      • 29. CIGRE Task Force 38-02-11: ‘Indices for predicting voltage collapse including dynamic phenomena’, 1994.
    26. 26)
      • 27. http://www.ee.washington.edu/research/pstca/pf118/pg_tca118bus.htm.
    27. 27)
      • 32. Chenine, M., Zhu, K., Nordstrom, L.: ‘Survey on priorities and communication requirements for PMU-based applications in the Nordic region’. IEEE Bucharest Power Tech, 2008, pp. 18.
    28. 28)
      • 24. Eremia, M., Shahidehpour, M.: ‘Handbook of electrical power system dynamics: modeling, stability, and control’ (Wiley, Hoboken, NJ, USA, 2013).
    29. 29)
      • 19. Dong, Y., Xie, X., Wang, K., et al: ‘An emergency-demand-response based under speed load shedding scheme to improve short-term voltage stability’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 37263735.
    30. 30)
      • 1. Morison, G., Gao, B., Kundur, P.: ‘Voltage stability analysis using static and dynamic approaches’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 11591171.
    31. 31)
      • 7. Kaffashan, I., Amraee, T.: ‘Probabilistic undervoltage load shedding using point estimate method’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22342244.
    32. 32)
      • 8. Ahmadi, A., Alinejad-Beromi, Y.: ‘A new integer-value modeling of optimal load shedding to prevent voltage instability’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 210219.
    33. 33)
      • 17. Sasikala, J., Ramaswamy, M.: ‘Fuzzy based load shedding strategies for avoiding voltage collapse’, Appl. Soft Comput., 2011, 11, (3), pp. 31793185.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0783
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0783
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address