http://iet.metastore.ingenta.com
1887

New adaptive and centralised under-voltage load shedding to prevent short-term voltage instability

New adaptive and centralised under-voltage load shedding to prevent short-term voltage instability

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a new adaptive and centralised under-voltage load shedding (UVLS) to prevent short-term voltage instability; it then examines the challenges related to the centralised UVLS. The proposed method uses a local measurement to estimate the amount of load shedding. It decreases the amount of load shedding by selecting the proper location of UVLS and shedding more powers within seconds after activating UVLS. Dynamic simulations are performed on the IEEE 118-bus test system, New England test system, and on Isfahan regional power grid (IRPG) as the case studies. Simulation results, when compared with the conventional multi-port network model and sensitivity-based methods, provide a considerable reduction in the active power shedding in addition to the number of the load shedding steps. Moreover, it indicates that the measurement bias errors have a considerable effect on UVLS. Finally, a method is introduced to overcome the effect of measurement errors.

References

    1. 1)
      • 1. Morison, G., Gao, B., Kundur, P.: ‘Voltage stability analysis using static and dynamic approaches’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 11591171.
    2. 2)
      • 2. Otomega, B., Cutsem, T.V.: ‘A load shedding scheme against both short- and long-term voltage instabilities in the presence of induction motors’. IEEE Trondheim Power Tech, 2011, pp. 17.
    3. 3)
      • 3. Ladhani, S.S., Rosehart, W.: ‘Under voltage load shedding for voltage stability overview of concepts and principles’. IEEE Power Engineering Society General Meeting, 2004, pp. 15971602.
    4. 4)
      • 4. Leon, J.A.D.d., Taylor, C.W.: ‘Understanding and solving short-term voltage stability problems’. IEEE PES Summer Meeting, 2002, pp. 745752.
    5. 5)
      • 5. Lei, J., Li, Y., Zhang, B., et al: ‘A WAMS based adaptive load shedding control strategy using a novel index of transient voltage stability’. Chinese Control Conf., 2014, pp. 81648169.
    6. 6)
      • 6. Mahari, A., Seyedi, H.: ‘A wide area synchrophasor-based load shedding scheme to prevent voltage collapse’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 248257.
    7. 7)
      • 7. Kaffashan, I., Amraee, T.: ‘Probabilistic undervoltage load shedding using point estimate method’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22342244.
    8. 8)
      • 8. Ahmadi, A., Alinejad-Beromi, Y.: ‘A new integer-value modeling of optimal load shedding to prevent voltage instability’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 210219.
    9. 9)
      • 9. Derafshian, M., Amjady, N., Dehghan, S.: ‘Special protection scheme against voltage collapse’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 341351.
    10. 10)
      • 10. Shubhanga, K.N., Kulkarni, A.M.: ‘Determination of effectiveness of transient stability controls using reduced number of trajectory sensitivity computations’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 437482.
    11. 11)
      • 11. Arief, A., Dong, Z., Nappu, M.B., et al: ‘Under voltage load shedding in power systems with wind turbine-driven doubly fed induction generators’, Electr. Power Syst. Res., 2013, 96, pp. 91100.
    12. 12)
      • 12. Nikolaidis, V.C., Vournas, C.D.: ‘Design strategies for load-shedding schemes against voltage collapse in the Hellenic system’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 582591.
    13. 13)
      • 13. Wang, Y., Pordanjani, I.R., Li, W., et al: ‘Strategy to minimise the load shedding amount for voltage collapse prevention’, IET Gener. Transm. Distrib., 2011, 5, (3), pp. 307313.
    14. 14)
      • 14. Xu, Y., Dong, Z.Y., Luo, F., et al: ‘Parallel-differential evolution approach for optimal event-driven load shedding against voltage collapse in power systems’, IET Gener. Transm. Distrib., 2014, 8, (4), pp. 651660.
    15. 15)
      • 15. Dalali, M., Karegar, H.K.: ‘Modified Thevenin-based voltage instability indicator and load shedding approach for MCF connected network’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 17451753.
    16. 16)
      • 16. Modarresi, J., Gholipour, E., Khodabakhshian, A.: ‘A comprehensive review of the voltage stability indices’, Renew. Sust. Energy Rev., 2016, 63, pp. 112.
    17. 17)
      • 17. Sasikala, J., Ramaswamy, M.: ‘Fuzzy based load shedding strategies for avoiding voltage collapse’, Appl. Soft Comput., 2011, 11, (3), pp. 31793185.
    18. 18)
      • 18. Otomega, B., Glavic, M., Cutsem, T.V.: ‘Distributed undervoltage load shedding’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 22832284.
    19. 19)
      • 19. Dong, Y., Xie, X., Wang, K., et al: ‘An emergency-demand-response based under speed load shedding scheme to improve short-term voltage stability’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 37263735.
    20. 20)
      • 20. Wang, J., Zhang, H., Zhou, Y.: ‘Intelligent under frequency and under voltage load shedding method based on the active participation of smart appliances’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 353361.
    21. 21)
      • 21. Junjie, T., Junqi, L., Ponci, F., et al: ‘Adaptive load shedding based on combined frequency and voltage stability assessment using synchrophasor measurements’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 20352047.
    22. 22)
      • 22. Meliopoulos, A.P.S., Cokkinides, G.J., Galvan, F., et al: ‘GPS-Synchronized data acquisition: technology assessment and research issues’. Hawaii Int. Conf. System Sciences, 2006, pp. 19.
    23. 23)
      • 23. Shi, D., Tylavsky, D.J., Logic, N.: ‘An adaptive method for detection and correction of errors in PMU measurements’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 15751583.
    24. 24)
      • 24. Eremia, M., Shahidehpour, M.: ‘Handbook of electrical power system dynamics: modeling, stability, and control’ (Wiley, Hoboken, NJ, USA, 2013).
    25. 25)
      • 25. Amraee, T., Ranjbar, A.M., Feuillet, R.: ‘Adaptive under-voltage load shedding scheme using model predictive control’, Electr. Power Syst. Res., 2011, 81, (7), pp. 15071513.
    26. 26)
      • 26. Pai, M.A.: ‘Energy function analysis for power system stability’ (Kluwer, Boston, MA, USA, 1989).
    27. 27)
      • 27. http://www.ee.washington.edu/research/pstca/pf118/pg_tca118bus.htm.
    28. 28)
      • 28. IEEE Std.C37.118.1-2011 (Revision of IEEE Std C37.118-2005): ‘IEEE standards for synchrophasor measurments for power systems’, 2011.
    29. 29)
      • 29. CIGRE Task Force 38-02-11: ‘Indices for predicting voltage collapse including dynamic phenomena’, 1994.
    30. 30)
      • 30. Abed, A.M.: ‘WSCC voltage stability criteria, undervoltage load shedding strategy, and reactive power reserve monitoring methodology’. IEEE Power Engineering Society Meeting, 1999, pp. 191197.
    31. 31)
      • 31. Mollah, K., Bahadornejad, M., Nair, N.K.C., et al: ‘Automatic under-voltage load shedding: a systematic review’. IEEE Power and Energy Society General Meeting, 2012, pp. 17.
    32. 32)
      • 32. Chenine, M., Zhu, K., Nordstrom, L.: ‘Survey on priorities and communication requirements for PMU-based applications in the Nordic region’. IEEE Bucharest Power Tech, 2008, pp. 18.
    33. 33)
      • 33. Chenine, M., Nordstrom, L.: ‘Modeling and simulation of wide-area communication for centralized PMU-based applications’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 13721380.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0783
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0783
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address