access icon free Modelling and analysis of a synchronous machine-emulated active intertying converter in hybrid AC/DC microgrids

The integration of renewable energy resources into the electrical distribution systems faces several stability challenges especially in the low inertia conditions. To address these issues, this study introduces a virtual synchronous machine (VSM) control strategy for the intertying power electronic converters in the autonomous AC/DC hybrid microgrids. It is shown that the VSM-based controller improves the system damping following the frequency disturbances and the AC/DC voltage variations. Moreover, a power management regulation topology is implemented in the active intertying converter to achieve an accurate bidirectional power flow under different loading conditions. A small-signal state-space model for the entire hybrid system is developed to assess the overall system performance. Time-domain simulation results under the PSCAD/EMTDC environment are also presented to investigate the effectiveness of the proposed techniques. The introduction of the VSM control for the intertying converters in the hybrid AC/DC microgrids provides a significant improvement in the dynamic performance and increases the robustness against external disturbances.

Inspec keywords: damping; power generation control; load flow control; power system management; power generation faults; machine control; synchronous machines; distributed power generation; electric current control; AC-DC power convertors; power control; time-domain analysis; energy management systems

Other keywords: PSCAD-EMTDC environment; renewable energy resource; autonomous AC-DC hybrid microgrid; VSM control strategy; synchronous machine; emulated active intertying power electronic converter; virtual synchronous machine control strategy; small-signal state-space model; bidirectional power flow; stability; power management regulation topology; electrical distribution system; system damping; time-domain simulation

Subjects: Current control; Distributed power generation; Control of electric power systems; Power system control; Power and energy control; AC-DC power convertors (rectifiers); Mathematical analysis; Synchronous machines; Power system management, operation and economics; Mathematical analysis

References

    1. 1)
      • 18. Alsiraji Alrajhi, H., El-Shatshat, R.: ‘Comprehensive assessment of virtual synchronous machine based voltage source converter controllers’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 17621769.
    2. 2)
      • 16. Alsiraji, H.K.A., El-saadany, E.F.: ‘Cooperative autonomous control for active power sharing in multi-terminal VSC-HVDC’, Int. J. Process Syst. Eng., 2014, 2, (4), pp. 303319.
    3. 3)
      • 3. Majumder, R.: ‘A hybrid microgrid with dc connection at back to back con converters’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 251259.
    4. 4)
      • 7. Arco, S.D., Suul, J.A., Fosso, O.B.: ‘Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 17431753.
    5. 5)
      • 22. Alsiraji, H.A.: ‘Cooperative power sharing control in multi- terminal VSC-HVDC’, Masters Thesis, University of Waterloo, 2014.
    6. 6)
      • 15. Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    7. 7)
      • 4. Wang, C., Yuan, K., Li, P.: ‘A projective integration method for transient stability assessment of power systems with a high penetration of distributed generation’, IEEE Trans. Smart Grid, 2016, 9, (1), pp. 386395.
    8. 8)
      • 12. Liu, J., Miura, Y., Ise, T.: ‘Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36003611.
    9. 9)
      • 13. Arco, S.D., Suul, J.A.: ‘Equivalence of virtual synchronous machines and frequency-droops for converter-based microGrids’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 394395.
    10. 10)
      • 21. Radwan, A.A.A., Mohamed, Y.A.I.: ‘Assessment and mitigation of interaction dynamics in hybrid AC/DC distribution generation systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 13821393.
    11. 11)
      • 11. Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: A survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2014, 54, (1), pp. 244254.
    12. 12)
      • 17. Chen, Y., Hesse, R., Turschner, D., et al: ‘Investigation of the virtual synchronous machine in the island mode’. IEEE PES Innovative Smart Grid Technologies Conf., Europe, 2012, pp. 16.
    13. 13)
      • 26. Cho, C., Jeon, J.H., Kim, J.Y., et al: ‘Active synchronizing control of a microgrid’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 37073719.
    14. 14)
      • 25. Manoloiu, A., Pereira, H.A., Teodorescu, R., et al: ‘Comparison of PI and PR current controllers applied on two-level VSC-HVDC transmission system’. 2015 IEEE PowerTech, Eindhoven, 2015, pp. 15.
    15. 15)
      • 1. Liserre, M., Sauter, T., Hung, J.Y.: ‘Future energy systems: inegrating renewable energy into the smart power grid through industrial electronics’, IEEE Ind. Electron. Mag., 2010, 4, pp. 1837.
    16. 16)
      • 19. Alrajhi Alsiraji, H., ElShatshat, R., Radwan, A.A.: ‘A novel control strategy for the interlinking converter in hybrid microgrid’. Proc. IEEE PES General Meeting, Chicago, IL, USA, July 2017, pp. 15.
    17. 17)
      • 9. Guan, M., Pan, W., Zhang, J., et al: ‘Synchronous generator emulation control strategy for voltage source converter (VSC) stations’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 19.
    18. 18)
      • 2. Patterson, M., Macia, N.F., Kannan, A.M.: ‘Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 359366.
    19. 19)
      • 14. Shintai, T., Miura, Y., Ise, T.: ‘Oscillation damping of a distributed generator using a virtual synchronous generator’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 668676.
    20. 20)
      • 6. Mohamed, Y.A.R.I., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
    21. 21)
      • 24. Loh, P.C., Li, D., Chai, Y.K., et al: ‘Autonomous operation of hybrid microgrid with ac and dc subgrids’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22142223.
    22. 22)
      • 23. Pogaku, N., Prodanović, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    23. 23)
      • 5. Teng, F., Strbac, G.: ‘Assessment of the role and value of frequency response support from wind plants’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 586595.
    24. 24)
      • 8. Serban, I., Marinescu, C.: ‘Control strategy of three-phase battery energy storage systems for frequency support in microgrids and with uninterrupted supply of local loads’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 50105020.
    25. 25)
      • 10. Wang, P., Jin, C., Zhu, D., et al: ‘Distributed control for autonomous operation of a three-port ac/dc/ds hybrid microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 12791290.
    26. 26)
      • 20. Radwan, A.A.A., Mohamed, Y.A.R.I.: ‘Networked control and power management of AC/DC hybrid microgrids’, IEEE Syst. J., 2017, 11, (3), pp. 16621673.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0734
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0734
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading