Modelling and analysis of a synchronous machine-emulated active intertying converter in hybrid AC/DC microgrids

Modelling and analysis of a synchronous machine-emulated active intertying converter in hybrid AC/DC microgrids

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The integration of renewable energy resources into the electrical distribution systems faces several stability challenges especially in the low inertia conditions. To address these issues, this study introduces a virtual synchronous machine (VSM) control strategy for the intertying power electronic converters in the autonomous AC/DC hybrid microgrids. It is shown that the VSM-based controller improves the system damping following the frequency disturbances and the AC/DC voltage variations. Moreover, a power management regulation topology is implemented in the active intertying converter to achieve an accurate bidirectional power flow under different loading conditions. A small-signal state-space model for the entire hybrid system is developed to assess the overall system performance. Time-domain simulation results under the PSCAD/EMTDC environment are also presented to investigate the effectiveness of the proposed techniques. The introduction of the VSM control for the intertying converters in the hybrid AC/DC microgrids provides a significant improvement in the dynamic performance and increases the robustness against external disturbances.


    1. 1)
      • 1. Liserre, M., Sauter, T., Hung, J.Y.: ‘Future energy systems: inegrating renewable energy into the smart power grid through industrial electronics’, IEEE Ind. Electron. Mag., 2010, 4, pp. 1837.
    2. 2)
      • 2. Patterson, M., Macia, N.F., Kannan, A.M.: ‘Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 359366.
    3. 3)
      • 3. Majumder, R.: ‘A hybrid microgrid with dc connection at back to back con converters’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 251259.
    4. 4)
      • 4. Wang, C., Yuan, K., Li, P.: ‘A projective integration method for transient stability assessment of power systems with a high penetration of distributed generation’, IEEE Trans. Smart Grid, 2016, 9, (1), pp. 386395.
    5. 5)
      • 5. Teng, F., Strbac, G.: ‘Assessment of the role and value of frequency response support from wind plants’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 586595.
    6. 6)
      • 6. Mohamed, Y.A.R.I., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
    7. 7)
      • 7. Arco, S.D., Suul, J.A., Fosso, O.B.: ‘Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 17431753.
    8. 8)
      • 8. Serban, I., Marinescu, C.: ‘Control strategy of three-phase battery energy storage systems for frequency support in microgrids and with uninterrupted supply of local loads’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 50105020.
    9. 9)
      • 9. Guan, M., Pan, W., Zhang, J., et al: ‘Synchronous generator emulation control strategy for voltage source converter (VSC) stations’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 19.
    10. 10)
      • 10. Wang, P., Jin, C., Zhu, D., et al: ‘Distributed control for autonomous operation of a three-port ac/dc/ds hybrid microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 12791290.
    11. 11)
      • 11. Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: A survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2014, 54, (1), pp. 244254.
    12. 12)
      • 12. Liu, J., Miura, Y., Ise, T.: ‘Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 36003611.
    13. 13)
      • 13. Arco, S.D., Suul, J.A.: ‘Equivalence of virtual synchronous machines and frequency-droops for converter-based microGrids’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 394395.
    14. 14)
      • 14. Shintai, T., Miura, Y., Ise, T.: ‘Oscillation damping of a distributed generator using a virtual synchronous generator’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 668676.
    15. 15)
      • 15. Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    16. 16)
      • 16. Alsiraji, H.K.A., El-saadany, E.F.: ‘Cooperative autonomous control for active power sharing in multi-terminal VSC-HVDC’, Int. J. Process Syst. Eng., 2014, 2, (4), pp. 303319.
    17. 17)
      • 17. Chen, Y., Hesse, R., Turschner, D., et al: ‘Investigation of the virtual synchronous machine in the island mode’. IEEE PES Innovative Smart Grid Technologies Conf., Europe, 2012, pp. 16.
    18. 18)
      • 18. Alsiraji Alrajhi, H., El-Shatshat, R.: ‘Comprehensive assessment of virtual synchronous machine based voltage source converter controllers’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 17621769.
    19. 19)
      • 19. Alrajhi Alsiraji, H., ElShatshat, R., Radwan, A.A.: ‘A novel control strategy for the interlinking converter in hybrid microgrid’. Proc. IEEE PES General Meeting, Chicago, IL, USA, July 2017, pp. 15.
    20. 20)
      • 20. Radwan, A.A.A., Mohamed, Y.A.R.I.: ‘Networked control and power management of AC/DC hybrid microgrids’, IEEE Syst. J., 2017, 11, (3), pp. 16621673.
    21. 21)
      • 21. Radwan, A.A.A., Mohamed, Y.A.I.: ‘Assessment and mitigation of interaction dynamics in hybrid AC/DC distribution generation systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 13821393.
    22. 22)
      • 22. Alsiraji, H.A.: ‘Cooperative power sharing control in multi- terminal VSC-HVDC’, Masters Thesis, University of Waterloo, 2014.
    23. 23)
      • 23. Pogaku, N., Prodanović, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    24. 24)
      • 24. Loh, P.C., Li, D., Chai, Y.K., et al: ‘Autonomous operation of hybrid microgrid with ac and dc subgrids’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22142223.
    25. 25)
      • 25. Manoloiu, A., Pereira, H.A., Teodorescu, R., et al: ‘Comparison of PI and PR current controllers applied on two-level VSC-HVDC transmission system’. 2015 IEEE PowerTech, Eindhoven, 2015, pp. 15.
    26. 26)
      • 26. Cho, C., Jeon, J.H., Kim, J.Y., et al: ‘Active synchronizing control of a microgrid’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 37073719.

Related content

This is a required field
Please enter a valid email address