access icon free Transient overvoltage response performance of transformer windings with short-circuit fault

The fault diagnosis of transformer windings is a basis for condition maintenance. Conventional online or offline diagnosis methods require additional pulse or impulse signal. If the overvoltage signal can be regarded as the broadband excitation source for the fault diagnosis of transformer windings, the interference caused by signal injection is likely eliminated without additional pulse or impulse signals. In this study, the transient overvoltage response performance of transformer windings with short-circuit fault is presented, which could provide a new method for the diagnosis on transformer fault diagnosis. A 10 kVA, 2400 V/220 V, 50 Hz, 1-phase tapped transformer was designed, and a test platform for the fault diagnosis of transformer windings is established. The excitation signals for the fault diagnosis of the transformer windings included different lightning waves and damped oscillation waves, as indicated by the differences among actual overvoltage waveforms. The voltage and current of windings under normal and fault conditions are determined, and the frequency responses of admittance and voltage transfer function are calculated. The criterion for the fault diagnosis of transformer windings is obtained by comparing and analysing statistical indicators that reflected the differences in the frequency response of transfer function under normal and fault.

Inspec keywords: transformer windings; statistical analysis; overvoltage; fault diagnosis; power transformer testing

Other keywords: statistical analysis; frequency response; transformer winding; short-circuit fault diagnosis; transient overvoltage response performance; voltage 2400 V; apparent power 10 kVA; broadband excitation source; condition maintenance; interference elimination; admittance transfer function; 1-phase tapped transformer; voltage 220 V; lightning wave; voltage transfer function; frequency 50 Hz; signal injection; damped oscillation wave

Subjects: Transformers and reactors; Other topics in statistics

References

    1. 1)
      • 19. Rahimpour, E., Jabbari, M., Tenbohlen, S.: ‘Mathematical comparison methods to assess transfer functions of transformers to detect different types of mechanical faults’, IEEE Trans. Power Deliv., 2010, 25, pp. 25442555.
    2. 2)
      • 2. Roy, C.K., Biswas, J.R.: ‘Studies on impulse behaviour of a transformer winding with simulated faults by analogue modelling’, IET Gener. Transm. Distrib., 1994, 141, (5), pp. 401412.
    3. 3)
      • 4. Asadi, N., Kelk, H.M.: ‘Modeling, analysis, and detection of internal winding faults in power transformers’, IEEE Trans. Ind. Appl., 2015, 30, pp. 24192426.
    4. 4)
      • 6. Hashemnia, N., Abu-Siada, A., Islam, S.: ‘Improved power transformer winding fault detection using FRA diagnostics – part 2: radial deformation simulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 564570.
    5. 5)
      • 16. Leibfried, T., Feser, K.: ‘Off-line- and on-line-monitoring of power transformers using the transfer function method’. Proc. IEEE Int. Symp. Electrical Insulation, Montreal, QC, Canada, June 1996, pp. 3437.
    6. 6)
      • 27. Shon, C.-H., Yi, S.-H., Lee, H.-J.: ‘Study on the transfer functions for detecting windings displacement of power transformers with impulse method’, J. Electr. Eng. Technol., 2012, 7, pp. 876883.
    7. 7)
      • 28. Demenko, A., Tomczuk, B., Waindok, A., et al: ‘Nonlinear scaled models in 3D calculation of transformer magnetic circuits’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., 2006, 25, (1), pp. 91101.
    8. 8)
      • 1. Gouda, O.E., El Dein, A.Z., Moukhtar, I.: ‘Turn-to-earth fault modelling of power transformer based on symmetrical components’, IET Gener. Transm. Distrib., 2013, 7, (7), pp. 709716.
    9. 9)
      • 8. Palani, A., Jayashankar, V.: ‘Virtual instrument for lightning impulse tests’, IEEE Trans. Power Deliv., 2007, 22, pp. 13091317.
    10. 10)
      • 14. Malewski, R., Poulin, B.: ‘Impulse testing of power transformers using the transfer function method’, IEEE Trans. Power Deliv., 1988, 3, (2), pp. 476489.
    11. 11)
      • 24. Wang, J., Yang, Q., Sima, W., et al: ‘A smart online over-voltage monitoring and identification system’, Energies, 2011, 4, pp. 599615.
    12. 12)
      • 20. De Rybel, T., Singh, A., Pak, P., et al: ‘Online signal injection through a bus-referenced current transformer’, IEEE Trans. Power Deliv., 2010, 25, pp. 2734.
    13. 13)
      • 21. De Rybel, T., Singh, A., Vandermaar, J.A., et al: ‘Apparatus for online power transformer winding monitoring using bushing tap injection’, IEEE Trans. Power Deliv., 2009, 24, pp. 9961003.
    14. 14)
      • 18. Secue, J.R., Mombello, E.: ‘Sweep frequency response analysis (SFRA) for the assessment of winding displacements and deformation in power transformers’, Electr. Power Syst. Res., 2008, 78, pp. 11191128.
    15. 15)
      • 15. Leibfried, T., Feser, K.: ‘On-line monitoring of transformers by means of the transfer function method’. Proc. IEEE Int. Symp. Electrical Insulation, Pittsburgh, PA, June 1994, pp. 111114.
    16. 16)
      • 25. Coffeen, L., McBride, J., Cantrelle, D.: ‘Initial development of EHV bus transient voltage measurement: an addition to on-line transformer FRA’. EPRI Substation Equipment Diagnostics Conf., Orlando, FL, March 2008.
    17. 17)
      • 9. Palani, A., Santhi, S., Gopalakrishna, S., et al: ‘Real-time techniques to measure winding displacement in transformers during short-circuit tests’, IEEE Trans. Power Deliv., 2008, 23, pp. 726732.
    18. 18)
      • 17. Leibfried, T., Knorr, W., Viereck, K., et al: ‘On-line monitoring of power transformers– trends, new developments and first experience’. Int. Council on Large Electric Systems (CIGRE), 1998.
    19. 19)
      • 11. Wang, M., Vandermaar, A.J., Srivastava, K.D.: ‘Improved detection of power transformer winding movement by extending the FRA high frequency range’, IEEE Trans. Power Deliv., 2005, 20, pp. 19301938.
    20. 20)
      • 23. Sima, W., Lan, X., Yang, Q.: ‘Statistical analysis on measured lightning overvoltage surges in a 110 kV air-insulated substation’, IET Sci. Meas. Technol., 2015, 9, pp. 2836.
    21. 21)
      • 22. Behjat, V., Vahedi, A., Setayeshmehr, A., et al: ‘Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings’, IEEE Trans. Power Deliv., 2011, 26, pp. 21232133.
    22. 22)
      • 26. Takami, J., Tsuboi, T., Yamamoto, K., et al: ‘Lightning surge characteristics on inclined incoming line to substation based on reduced-scale model experiment’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (3), pp. 739746.
    23. 23)
      • 13. Vaillancourt, G.H., Malewski, R., Train, D.: ‘Comparison of three techniques of partial discharge measurements in power transformers’, IEEE Trans. Power Appar. Syst., 1985, PER-5, (4), pp. 900909.
    24. 24)
      • 3. Mostafaei, M., Haghjoo, F.: ‘Flux-based turn-to-turn fault protection for power transformers’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 11541163.
    25. 25)
      • 10. Bagheri, M., Naderi, M.S., Blackburn, T., et al: ‘Frequency response analysis and short-circuit impedance measurement in detection of winding deformation within power transformers’, IEEE Electr. Insul. Mag., 2013, 29, pp. 3340.
    26. 26)
      • 31. Satish, L., Sahoo, S.K.: ‘An effort to understand what factors affect the transfer function of a two-winding transformer’, IEEE Trans. Power Deliv., 2005, 20, pp. 14301440.
    27. 27)
      • 30. Han, R., Yang, Q., Sima, W., et al: ‘Non-contact measurement of lightning and switching transient overvoltage based on capacitive coupling and pockels effects’, Electr. Power Syst. Res., 2016, 139, pp. 93100.
    28. 28)
      • 29. Brubaker, M.A., Lindgren, S.R., Frimpong, G.K., et al: ‘Streaming electrification measurements in A 1/4-scale transformer model’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 978985.
    29. 29)
      • 5. Hashemnia, N., Abu-Siada, A., Islam, S.: ‘Improved power transformer winding fault detection using FRA diagnostics – part 1: axial displacement simulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 556563.
    30. 30)
      • 7. Zhang, H., Yang, B., Xu, W.: ‘Dynamic deformation analysis of power transformer windings in short-circuit fault by FEM’, IEEE Trans. Appl. Supercond., 2014, 24, (3), pp. 14.
    31. 31)
      • 12. Kim, J.W., Park, B., Jeong, S.C., et al: ‘Fault diagnosis of a power transformer using an improved frequency-response analysis’, IEEE Trans. Power Deliv., 2005, 20, pp. 169178.
    32. 32)
      • 32. Ji, T.Y., Tang, W.H., Wu, Q.H.: ‘Detection of power transformer winding deformation and variation of measurement connections using a hybrid winding model’, Electr. Power Syst. Res., 2012, 87, pp. 3946.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0702
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0702
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading