http://iet.metastore.ingenta.com
1887

Transient overvoltage response performance of transformer windings with short-circuit fault

Transient overvoltage response performance of transformer windings with short-circuit fault

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The fault diagnosis of transformer windings is a basis for condition maintenance. Conventional online or offline diagnosis methods require additional pulse or impulse signal. If the overvoltage signal can be regarded as the broadband excitation source for the fault diagnosis of transformer windings, the interference caused by signal injection is likely eliminated without additional pulse or impulse signals. In this study, the transient overvoltage response performance of transformer windings with short-circuit fault is presented, which could provide a new method for the diagnosis on transformer fault diagnosis. A 10 kVA, 2400 V/220 V, 50 Hz, 1-phase tapped transformer was designed, and a test platform for the fault diagnosis of transformer windings is established. The excitation signals for the fault diagnosis of the transformer windings included different lightning waves and damped oscillation waves, as indicated by the differences among actual overvoltage waveforms. The voltage and current of windings under normal and fault conditions are determined, and the frequency responses of admittance and voltage transfer function are calculated. The criterion for the fault diagnosis of transformer windings is obtained by comparing and analysing statistical indicators that reflected the differences in the frequency response of transfer function under normal and fault.

References

    1. 1)
      • 1. Gouda, O.E., El Dein, A.Z., Moukhtar, I.: ‘Turn-to-earth fault modelling of power transformer based on symmetrical components’, IET Gener. Transm. Distrib., 2013, 7, (7), pp. 709716.
    2. 2)
      • 2. Roy, C.K., Biswas, J.R.: ‘Studies on impulse behaviour of a transformer winding with simulated faults by analogue modelling’, IET Gener. Transm. Distrib., 1994, 141, (5), pp. 401412.
    3. 3)
      • 3. Mostafaei, M., Haghjoo, F.: ‘Flux-based turn-to-turn fault protection for power transformers’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 11541163.
    4. 4)
      • 4. Asadi, N., Kelk, H.M.: ‘Modeling, analysis, and detection of internal winding faults in power transformers’, IEEE Trans. Ind. Appl., 2015, 30, pp. 24192426.
    5. 5)
      • 5. Hashemnia, N., Abu-Siada, A., Islam, S.: ‘Improved power transformer winding fault detection using FRA diagnostics – part 1: axial displacement simulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 556563.
    6. 6)
      • 6. Hashemnia, N., Abu-Siada, A., Islam, S.: ‘Improved power transformer winding fault detection using FRA diagnostics – part 2: radial deformation simulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 564570.
    7. 7)
      • 7. Zhang, H., Yang, B., Xu, W.: ‘Dynamic deformation analysis of power transformer windings in short-circuit fault by FEM’, IEEE Trans. Appl. Supercond., 2014, 24, (3), pp. 14.
    8. 8)
      • 8. Palani, A., Jayashankar, V.: ‘Virtual instrument for lightning impulse tests’, IEEE Trans. Power Deliv., 2007, 22, pp. 13091317.
    9. 9)
      • 9. Palani, A., Santhi, S., Gopalakrishna, S., et al: ‘Real-time techniques to measure winding displacement in transformers during short-circuit tests’, IEEE Trans. Power Deliv., 2008, 23, pp. 726732.
    10. 10)
      • 10. Bagheri, M., Naderi, M.S., Blackburn, T., et al: ‘Frequency response analysis and short-circuit impedance measurement in detection of winding deformation within power transformers’, IEEE Electr. Insul. Mag., 2013, 29, pp. 3340.
    11. 11)
      • 11. Wang, M., Vandermaar, A.J., Srivastava, K.D.: ‘Improved detection of power transformer winding movement by extending the FRA high frequency range’, IEEE Trans. Power Deliv., 2005, 20, pp. 19301938.
    12. 12)
      • 12. Kim, J.W., Park, B., Jeong, S.C., et al: ‘Fault diagnosis of a power transformer using an improved frequency-response analysis’, IEEE Trans. Power Deliv., 2005, 20, pp. 169178.
    13. 13)
      • 13. Vaillancourt, G.H., Malewski, R., Train, D.: ‘Comparison of three techniques of partial discharge measurements in power transformers’, IEEE Trans. Power Appar. Syst., 1985, PER-5, (4), pp. 900909.
    14. 14)
      • 14. Malewski, R., Poulin, B.: ‘Impulse testing of power transformers using the transfer function method’, IEEE Trans. Power Deliv., 1988, 3, (2), pp. 476489.
    15. 15)
      • 15. Leibfried, T., Feser, K.: ‘On-line monitoring of transformers by means of the transfer function method’. Proc. IEEE Int. Symp. Electrical Insulation, Pittsburgh, PA, June 1994, pp. 111114.
    16. 16)
      • 16. Leibfried, T., Feser, K.: ‘Off-line- and on-line-monitoring of power transformers using the transfer function method’. Proc. IEEE Int. Symp. Electrical Insulation, Montreal, QC, Canada, June 1996, pp. 3437.
    17. 17)
      • 17. Leibfried, T., Knorr, W., Viereck, K., et al: ‘On-line monitoring of power transformers– trends, new developments and first experience’. Int. Council on Large Electric Systems (CIGRE), 1998.
    18. 18)
      • 18. Secue, J.R., Mombello, E.: ‘Sweep frequency response analysis (SFRA) for the assessment of winding displacements and deformation in power transformers’, Electr. Power Syst. Res., 2008, 78, pp. 11191128.
    19. 19)
      • 19. Rahimpour, E., Jabbari, M., Tenbohlen, S.: ‘Mathematical comparison methods to assess transfer functions of transformers to detect different types of mechanical faults’, IEEE Trans. Power Deliv., 2010, 25, pp. 25442555.
    20. 20)
      • 20. De Rybel, T., Singh, A., Pak, P., et al: ‘Online signal injection through a bus-referenced current transformer’, IEEE Trans. Power Deliv., 2010, 25, pp. 2734.
    21. 21)
      • 21. De Rybel, T., Singh, A., Vandermaar, J.A., et al: ‘Apparatus for online power transformer winding monitoring using bushing tap injection’, IEEE Trans. Power Deliv., 2009, 24, pp. 9961003.
    22. 22)
      • 22. Behjat, V., Vahedi, A., Setayeshmehr, A., et al: ‘Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings’, IEEE Trans. Power Deliv., 2011, 26, pp. 21232133.
    23. 23)
      • 23. Sima, W., Lan, X., Yang, Q.: ‘Statistical analysis on measured lightning overvoltage surges in a 110 kV air-insulated substation’, IET Sci. Meas. Technol., 2015, 9, pp. 2836.
    24. 24)
      • 24. Wang, J., Yang, Q., Sima, W., et al: ‘A smart online over-voltage monitoring and identification system’, Energies, 2011, 4, pp. 599615.
    25. 25)
      • 25. Coffeen, L., McBride, J., Cantrelle, D.: ‘Initial development of EHV bus transient voltage measurement: an addition to on-line transformer FRA’. EPRI Substation Equipment Diagnostics Conf., Orlando, FL, March 2008.
    26. 26)
      • 26. Takami, J., Tsuboi, T., Yamamoto, K., et al: ‘Lightning surge characteristics on inclined incoming line to substation based on reduced-scale model experiment’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (3), pp. 739746.
    27. 27)
      • 27. Shon, C.-H., Yi, S.-H., Lee, H.-J.: ‘Study on the transfer functions for detecting windings displacement of power transformers with impulse method’, J. Electr. Eng. Technol., 2012, 7, pp. 876883.
    28. 28)
      • 28. Demenko, A., Tomczuk, B., Waindok, A., et al: ‘Nonlinear scaled models in 3D calculation of transformer magnetic circuits’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., 2006, 25, (1), pp. 91101.
    29. 29)
      • 29. Brubaker, M.A., Lindgren, S.R., Frimpong, G.K., et al: ‘Streaming electrification measurements in A 1/4-scale transformer model’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 978985.
    30. 30)
      • 30. Han, R., Yang, Q., Sima, W., et al: ‘Non-contact measurement of lightning and switching transient overvoltage based on capacitive coupling and pockels effects’, Electr. Power Syst. Res., 2016, 139, pp. 93100.
    31. 31)
      • 31. Satish, L., Sahoo, S.K.: ‘An effort to understand what factors affect the transfer function of a two-winding transformer’, IEEE Trans. Power Deliv., 2005, 20, pp. 14301440.
    32. 32)
      • 32. Ji, T.Y., Tang, W.H., Wu, Q.H.: ‘Detection of power transformer winding deformation and variation of measurement connections using a hybrid winding model’, Electr. Power Syst. Res., 2012, 87, pp. 3946.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0702
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0702
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address