Your browser does not support JavaScript!

Simplification and cost reduction of visual corona tests

Simplification and cost reduction of visual corona tests

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Visual corona tests are useful to identify the critical corona points of different high-voltage components. Radio interference voltage and partial discharge measurements also allow detecting corona activity. However, these techniques require expensive screened laboratories, sophisticated instrumentation and usually do not provide the exact location of the discharges. Corona tests are often performed in external laboratories, where customers habitually have to face long waiting times. The tests in such laboratories must be totally planned beforehand, as they are habitually done by external engineers, so little information about the behaviour and possible modifications of the product is acquired by the customer. This study proposes a feasible solution to perform routine corona tests, while greatly reducing the voltage applied, laboratory size and requirements, testing times, and thus test costs. This study also detects the visual corona onset by means of a commercial digital camera, which allows locating the critical corona points, thus greatly decreasing the costs of the corona instrumentation, while maintaining the accuracy and sensitivity of the detection method. The methodology proposed in this study can be applied to many other high-voltage devices such as conductors, vibration dumpers, corona protections and different types of hardware and fittings for power lines and substations.


    1. 1)
      • 16. NEMA.: ‘NEMA 107-2016: Methods of Measurement of Radio Influence Voltage (RIV) of High Voltage Apparatus – NEMA’, 2016, pp. 119.
    2. 2)
      • 13. Souza, A.L., Lopes, I.J.S.: ‘Experimental investigation of corona onset in contaminated polymer surfaces’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 13211331.
    3. 3)
      • 4. Abouelsaad, M.M.: ‘Modelling of corona discharge of a tri-electrode system for electrostatic separation processes’, IET Sci. Meas. Technol., 2014, 8, (6), pp. 497504.
    4. 4)
      • 3. Du, Z., Huang, D., Qiu, Z., et al: ‘Prediction study on positive DC corona onset voltage of rod-plane air gaps and its application to the design of valve hall fittings’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 15191526.
    5. 5)
      • 8. Al-Hamouz, Z.M., Abdel-Salam, M., Al-Shehri, A.M.: ‘Inception voltage of corona in bipolar ionized fields-effect on corona power loss’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 5765.
    6. 6)
      • 6. Hernandez-Guiteras, J., Riba, J., Casals-Torrens, P.: ‘Determination of the corona inception voltage in an extra high voltage substation connector’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 8288.
    7. 7)
      • 2. Zhang, C., Yi, Y., Wang, L.: ‘Positive dc corona inception on dielectric-coated stranded conductors in air’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 557563.
    8. 8)
      • 24. Vaillancourt, G.H., Dechamplain, A., Malewski, R.A.: ‘Simultaneous measurement of partial discharge and radio-interference voltage’, IEEE Trans. Instrum. Meas., 1982, IM-31, (1), pp. 4952.
    9. 9)
      • 7. Li, Z.-X., Fan, J.-B., Yin, Y., et al: ‘Numerical calculation of the negative onset corona voltage of high-voltage direct current bare overhead transmission conductors’, IET Gener. Transm. Distrib., 2010, 4, (9), p. 1009.
    10. 10)
      • 31. IEC: ‘IEC 60437:1997: Radio interference test on high-voltage insulators’, International Electrotechnical Commission, Geneva, Switzerland, 1997, pp. 129.
    11. 11)
      • 20. Lemke, E., Berlijn, S., Gulski, E., et al: ‘Guide for electrical partial discharge measurements in compliance to IEC 60270’, Electra, vol. 241, no. Technical Brochure 366, 2008, pp. 6167.
    12. 12)
      • 19. ANSI/NEMA.: ‘ANSI/NEMA CC1. Electric Power Connection for Substation’, Rosslyn, Virginia, 2009.
    13. 13)
      • 27. Electric Power Research Institute: ‘Transmission line reference book 345 kV and above’ (Electric Power Research Institute (EPRI), Palo Alto, CA, 2014, 2014 edn.).
    14. 14)
      • 5. Zhang, X., Huang, K., Xiao, X.: ‘Modelling of the corona characteristics under damped oscillation impulses’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 16481653.
    15. 15)
      • 23. Vaillancourt, G.H., Malewski, R., Train, D.: ‘Comparison of three techniques of partial discharge measurements in power transformers’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (4), pp. 900909.
    16. 16)
      • 21. Naidu, M.S., Kamaraju, V.: ‘High voltage engineering’ (Tata McGraw-Hill Publishing Company Limited, New York, 1996).
    17. 17)
      • 10. Gulski, E.: ‘Digital analysis of partial discharges’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (5), pp. 822837.
    18. 18)
      • 15. Pedersen, A.: ‘Calculation of spark breakdown or corona starting voltages in nonuniform fields’, IEEE Trans. Power Appar. Syst., 1967, PAS-86, (2), pp. 200206.
    19. 19)
      • 12. Yahaya, E.A., Tsado Jacob, M., Nwohu, A.A.: ‘Power loss due to corona on high voltage transmission lines’, IOSR J. Electr. Electron. Eng., 2013, 8, (3), pp. 1419.
    20. 20)
      • 22. Hernández-Guiteras, J., Riba, J.-R., Romeral, L.: ‘Redesign process of a 765kVRMS AC substation connector by means of 3D-FEM simulations’, Simul. Modelling Pract. Theory, 2014, 42, pp. 111.
    21. 21)
      • 26. Allen, N.L., Abdel-Salam, M., Cotton, I.: ‘Effects of temperature and pressure change on positive corona and sparkover under direct voltage in short airgaps’, IET Sci. Meas. Technol., 2007, 1, (4), pp. 210215.
    22. 22)
      • 18. IEEE, ‘IEEE Std 1829-2017 – IEEE Guide for Conducting Corona Tests on Hardware for Overhead Transmission Lines and Substations’, 2017.
    23. 23)
      • 14. Pedersen, A., Lebeda, J., Vibholm, S.: ‘Analysis of spark breakdown characteristics for sphere gaps’, IEEE Trans. Power Appar. Syst., 1967, PAS-86, (8), pp. 975978.
    24. 24)
      • 25. Abdel-Salam, M., Allen, N.L., Cotton, I.: ‘Computation of inception voltage and inception time of positive impulse corona in rod-plane gaps’, IET Sci. Meas. Technol., 2007, 1, (4), pp. 179184.
    25. 25)
      • 17. International Electrotechnical Commission, IEC 60270:2000: High-voltage test techniques – partial discharge measurements, 3.0. International Electrotechnical Commission, 2000.
    26. 26)
      • 1. IEEE.: ‘IEEE Std 100–2000: The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition,’ IEEE Std 100–2000, 2000, pp. 11362.
    27. 27)
      • 30. Hu, Q., Shu, L., Jiang, X., et al: ‘Effects of air pressure and humidity on the corona onset voltage of bundle conductors’, IET Gener. Transm. Distrib., 2011, 5, (6), p. 621.
    28. 28)
      • 28. Kuffel, J., Zaengl, W.S., Kuffel, P.: ‘High voltage engineering fundamentals’ (Newnes, Oxford, 2000, 2nd edn.).
    29. 29)
      • 29. IEEE: ‘IEEE Std 4-2013 (Revision of IEEE Std 4-1995) IEEE Standard for High-Voltage Testing Techniques’, IEEE Std 4-2013 (Revision of IEEE Std 4-1995), 2013, pp. 1213.
    30. 30)
      • 11. Liu, Y., Cui, X., Lu, T., et al: ‘Accurate measurement of original current pulses because of positive corona in the coaxial cylindrical arrangement’, IET Sci. Meas. Technol., 2015, 9, (1), pp. 1219.
    31. 31)
      • 9. Chen, L., MacAlpine, J.M.K., Bian, X., et al: ‘Comparison of methods for determining corona inception voltages of transmission line conductors’, J. Electrostat., 2013, 71, (3), pp. 269275.

Related content

This is a required field
Please enter a valid email address