access icon free Fault location on branched networks using mathematical morphology

Here, a new travelling wave-based fault location method is proposed for branched networks. A mathematical morphology-based filter is used to analyse fault-induced transient signals and detects the arrival time of travelling waves. In the proposed algorithm, using the first surge arrival time of travelling waves at each of the travelling wave detectors installed in the network, a set of linear equations is constructed. By solving the equations, the probable fault occurrence points on the main line of the network are determined. Finally, proper evaluation criterions are introduced to determine accurate faulted lateral branch or fault location on the main lines. Extensive simulation studies using EMTP and MATLAB are carried out to examine the effectiveness of the proposed method. The obtained results verify the high accuracy, noise immunity, and fault impedance robustness of the proposed method.

Inspec keywords: power distribution faults; fault location; mathematical morphology

Other keywords: branched networks; fault-induced transient signals; mathematical morphology-based filter; probable fault occurrence points; linear equations; MATLAB; travelling wave-based fault location method; EMTP; travelling wave detectors

Subjects: Distribution networks; Power system protection

References

    1. 1)
      • 20. Li, Z., Zeng, X., Yao, J.: ‘Wide area travelingwave based power grid fault network location method’, Int. J. Elect. Power Energy Syst., 2014, 63, pp. 173177.
    2. 2)
      • 11. Dong, X., Kong, W., Cui, T.: ‘Fault classification and faulted-phase selection based on the initial current traveling wave’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 552559.
    3. 3)
      • 13. Jafarian P. Sanaye-Pasand, M.: ‘A traveling-wave-based protection technique using wavelet/PCA analysis’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 588599.
    4. 4)
      • 35. Abur, A., Magnago, F.H.: ‘Use of time delays between modal components in wavelet based fault location’, Int. J. Elect. Power Energy Syst., 2000, 22, (6), pp. 397403.
    5. 5)
      • 7. Liao, Y.: ‘Generalized fault-location methods for overhead electric distribution systems’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 5364.
    6. 6)
      • 10. Lin, X., Zhao, F., Wu, G., et al: ‘Universal wave front positioning correction method on traveling-wave-based fault-location algorithms’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 16011610.
    7. 7)
      • 6. Ngu, E.E., Krishnathevar, R.: ‘Generalized impedance-based fault location for distribution systems’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 449451.
    8. 8)
      • 30. Serra, J.: ‘Image analysis and mathematical morphology’ (Academic, New York, 1982).
    9. 9)
      • 25. Tawfik, M.M., Morcos, M.M.: ‘On the use of prony method to locate faults in loop systems by utilizing modal parameters of fault current’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 532534.
    10. 10)
      • 17. Pourahmadi-Nakhli, M., Safavi, A.A.: ‘Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 772781.
    11. 11)
      • 34. Namdari, F., Salehi, M.: ‘A high-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 246253.
    12. 12)
      • 9. Borghetti, A., Bosetti, M., Nucci, C.A., et al: ‘Continuous-wavelet transform for fault location in distribution power networks: definition of mother wavelets inferred from fault originated transients’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 380388.
    13. 13)
      • 32. Heijmans, H.J.A.M.: ‘Morphological image operators’ (Academic, New York, NY, USA, 1994).
    14. 14)
      • 24. Ngaopitakkul, A., Pothisarn, C.: ‘Discrete wavelet transform and back-propagation neural networks algorithm for fault location on single-circuit transmission line’. Proc. IEEE Int. Conf. Robotics and Biomimetics (ROBIO), 2008, pp. 16131618.
    15. 15)
      • 5. Salim, R., Salim, K., Bretas, A.: ‘Further improvements on impedance-based fault location for power distribution systems’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 467478.
    16. 16)
      • 28. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: ‘The dual-tree complex wavelet transform’, IEEE Signal Process. Mag., 2005, 22, (6), pp. 123151.
    17. 17)
      • 27. Robson, S., Haddad, A., Griffiths, H.: ‘Fault location on branched networks using a multiended approach’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 19551963.
    18. 18)
      • 15. Lopes, F.V.: ‘Settings-free traveling-wave-based earth fault location using unsynchronized two-terminal data’, IEEE Trans. Power Deliv., 2016, 31, (5), pp. 22962298.
    19. 19)
      • 19. Lin, S., He, Z.Y., Li, X.P.: ‘Travelling wave time–frequency characteristic-based fault location method fortransmission lines’, IET Gener. Transm. Distrib., 2012, 6, (8), pp. 764772.
    20. 20)
      • 16. Rui, L., Fei, W., Guoqing, F., et al: ‘A general fault location method in complex power grid based on wide-area traveling wave data acquisition’, Int. J. Elect. Power Energy Syst., 2016, 83, pp. 213218.
    21. 21)
      • 29. Matheron, G.: ‘Random sets and integral geometry’ (Wiley, New York, 1975).
    22. 22)
      • 22. Thukaram, D., Khincha, H.P., Vijaynarasimha, H.P.: ‘Artificial neural network and support vector machine approach for locating faults in radial distribution systems’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 710721.
    23. 23)
      • 14. Rui, L., Guoqing, F., Xueyuan, Z., et al: ‘Fault location based on single terminal travelling wave analysis in radial distribution network’, Int. J. Elect. Power Energy Syst., 2016, 66, pp. 160165.
    24. 24)
      • 2. Filomena, A.D., Resener, M., Salim, R.H., et al: ‘Fault location for underground distribution feeders: an extended impedance-based formulation with capacitive current compensation’, Int. J. Elect. Power Energy Syst., 2009, 31, pp. 489496.
    25. 25)
      • 3. Aslan, Y., Ture, S.: ‘Location of faults in power distribution laterals using superimposed components and programmable logic controllers’, Int. J. Elect. Power Energy Syst., 2011, 33, pp. 10031011.
    26. 26)
      • 1. Mora-Florez, J., Melendez, J., Carrillo-Caicedo, G.: ‘Comparison of impedance based fault locations methods for power distribution systems’, Electr. Power Syst. Res., 2008, 78, (4), pp. 657666.
    27. 27)
      • 18. Ebron, S., Lubkeman, D., White, M.: ‘A neural network approach to the detection of incipient faults on power distribution feeders’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 905914.
    28. 28)
      • 36. United Kingdom Generic Distribution System’, University of Strathclyde, Glasgow, UK. Available at http//www.sedg.ac.uk/ukgds, accessed December 2015.
    29. 29)
      • 37. Marti, J.: ‘Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations’, IEEE Trans. Power Appar., 1982, PAS-101, (1), pp. 147157.
    30. 30)
      • 33. Zhang, L., Xu, J., Yang, J., et al: ‘Multiscale morphology analysis and its application to fault diagnosis’, Mech. Syst. Signal Process., 2008, 22, (3), pp. 597610.
    31. 31)
      • 4. Salim, R.H., Resener, M., Filomena, A.D., et al: ‘Extended fault-location formulation for power distribution systems’, IEEE Trans. Power Del., 2009, 24, (2), pp. 508516.
    32. 32)
      • 8. Ngu, E.E., Ramar, K.: ‘A combined impedance and traveling wave based fault location method for multi-terminal transmission lines’, Int. J. Elect. Power Energy Syst., 2011, 33, pp. 17671775.
    33. 33)
      • 12. Dong, X., Shi, S., Cui, T., et al: ‘Optimizing solution of fault location using single terminal quantities’, Sci. China E: Tech. Sci., 2008, 51, (6), pp. 761772.
    34. 34)
      • 21. Coser, J., do Vale, D.T., Rolim, J.G.: ‘Design and training of artificial neural networks for locating low current faults in distribution systems’, Proc. IEEE Int. Conf. Intelligent Systems Applications to Power Systems (ISAP), 2007, pp. 16.
    35. 35)
      • 26. Sade, J., Bakhshizadeh, E., Kazemzadeh, R.: ‘A new fault location algorithm for radial distribution systems using modal analysis’, Int. J. Elect. Power Energy Syst., 2013, 45, (1), pp. 271278.
    36. 36)
      • 23. Moshtagh, J., Aggarwal, R.K.: ‘A new approach to ungrounded fault location in a three-phase underground distribution system using combined neural networks & wavelet analysis’. Proc. IEEE Canadian Conf. Electrical and Computer Engineering (CCECE), 2006, pp. 376381.
    37. 37)
      • 31. Wu, Q.H., Lu, Z., Ji, T.Y.: ‘Protective relaying of power systems using mathematical morphology’ (Springer, New York, 2009, 1st edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0598
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0598
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading