Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free IDA-PB control with integral action of Y-connected modular multilevel converter for fractional frequency transmission application

Y-connected modular multilevel converter (Y-MMC) is a new topology of direct AC/AC power conversion, with broad application prospects in fractional-frequency transmission system. This study studies the mathematical model of Y-MMC and builds the port-controlled Hamiltonian model. Since vector control scheme can hardly ensure global stability, the interconnection and damping assignment passivity-based control (IDA-PBC) method is applied for controller design of Y-MMC. Three typical IDA-PBC strategies are then proposed, featuring the asymptotical stability of the desired equilibrium. To eliminate steady-state error, integrators are further added to the IDA-PB controller. Different from the previous research, the proposed method enables the decoupling of different-frequency components and the suppression of frequency leakage. Besides, the reactive power distribution coefficients are introduced to characterise the optimisation allocation of reactive power between arms. Finally, the effectiveness and superiority of the proposed control strategy are verified by both the simulation and experiment results.

References

    1. 1)
      • 3. Xifan, W.: ‘The fractional frequency transmission system’. Proc. Int. Sessions in IEE Japan, Power and Energy Society Annual Conf., Tokyo, Japan, 1994.
    2. 2)
      • 2. Bresesti, P., Kling, W.L., Hendriks, R.L., et al: ‘HVDC connection of offshore wind farms to the transmission system’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 3743.
    3. 3)
      • 8. Angkititrakul, S., Erickson, R.W.: ‘Capacitor voltage balancing control for a modular matrix converter’. 21st Annual IEEE Conf. and Exposition on Applied Power Electronics, 2006.
    4. 4)
      • 14. Kawamura, W., Hagiwara, M., Akagi, H.: ‘Control and experiment of a modular multilevel cascade converter based on triple-star bridge cells (MMCC-TSBC)’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 35363548.
    5. 5)
      • 16. Baruschka, L., Mertens, A.: ‘A new 3-phase direct modular multilevel converter’. European Conf. Power Electronics & Applications, 2011, vol. 41, no. 8, pp. 110.
    6. 6)
      • 4. Xifan, W., Xiuli, W.: ‘Feasibility study of fractional frequency transmission system’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 962967.
    7. 7)
      • 9. Miura, Y., Mizutani, T., Ito, M., et al: ‘A novel space vector control with capacitor voltage balancing for a multilevel modular matrix converter’. IEEE ECCE Asia, Melbourne, Australia, 2013.
    8. 8)
      • 5. Xifan, W., Chengjun, C., Zhichao, Z.: ‘Experiment on fractional frequency transmission system’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 372377.
    9. 9)
      • 12. Kawamura, W., Hagiwara, M., Akagi, H.: ‘A broad range of frequency control for the modular multilevel cascade converter based on triple-star bridge-cells (MMCC-TSBC)’. Energy Conversion Congress and Exposition (ECCE), Denver, USA, 2013, pp. 40144021.
    10. 10)
      • 22. Ortega, R., Canseco, E.G.: ‘Interconnection and damping assignment passivity-based control: a survey’, Eur. J. Control, 2004, 10, pp. 432450.
    11. 11)
      • 6. Zhuoyan, S., Xifan, W., Yufei, T., et al: ‘Optimal control study for fractional frequency wind power system’. Asia-Pacific Power and Energy Engineering Conf., Shanghai, China, 2012, 1, (5), pp. 2729.
    12. 12)
      • 1. Erlich, I., Shewarega, F., Wrede, H., et al: ‘Low frequency AC for offshore wind power transmission-prospects and challenges’. IET Int. Conf. AC and DC Power Transmission, Birmingham, UK, 2015.
    13. 13)
      • 13. Kawamura, W., Akagi, H.: ‘Control of the modular multilevel cascade converter based on triple-star bridge-cells (MMCC-TSBC) for motor drives’. IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, 2012, pp. 35063513.
    14. 14)
      • 23. Shen, T.: ‘H∞ control theory and Application’ (Tsinghua University Press, 1996).
    15. 15)
      • 18. Karwatzki, D., Baruschka, L., Hofen, M., et al: ‘Branch energy control for the modular multilevel direct converter hexverter’. IEEE Energy Conversion Congress & Exposition, Pittsburgh, USA, 2014, pp. 16131622.
    16. 16)
      • 7. Erickson, R.W., Al-Naseem, O.A.: ‘A new family of matrix converters’. 27th Annual Conf. the IEEE Industrial Electronics Society, Denver, USA, 2001, pp. 15151520.
    17. 17)
      • 15. Baruschka, L., Mertens, A.: ‘A new 3-phase AC/AC modular multilevel converter with six branches in hexagonal configuration’, Energy Convers. Congr. Exposition, 2011, 49, (3), pp. 14001410.
    18. 18)
      • 21. Ortega, R., Schaft, A., Maschke, B., et al: ‘Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems’, Automatica, 2002, 38, pp. 585596.
    19. 19)
      • 24. Slotine, J.E., Li, W.: ‘Applied nonlinear Control’ (Prentice-Hall, 1991).
    20. 20)
      • 10. Kammerer, F., Kolb, J.: ‘A novel cascaded vector control scheme for the modular multilevel matrix converter’. 37th Annual Conf. IEEE Industrial Electronics Society, Melbourne, Australia, 2011, pp. 10971102.
    21. 21)
      • 17. Baruschka, L., Mertens, A.: ‘A new three-phase AC/AC modular multilevel converter with six branches in hexagonal configuration’, IEEE Trans. Ind. Appl., 2011, 49, (3), pp. 14001410.
    22. 22)
      • 19. Karwatzki, D., Baruschka, L., et al: ‘Improved hexverter topology with magnetically coupled branch inductors’. European Conf. Power Electronics & Applications, Lappeenranta, Finland, 2014, pp. 110.
    23. 23)
      • 11. Kammerer, F., Kolb, J., Braun, M.: ‘Fully decoupled current control and energy balancing of the modular multilevel matrix converter’. 15th Int. Conf. Power Electronics and Motion Control, Novi Sad, Serbia, 2012, pp. 38.
    24. 24)
      • 20. Bo, L, Yongqing, M, Senge, B.: ‘A novel high-power AC/AC modular multilevel converter in Y configuration and its control strategy’. IEEE PES Asia-Pacific Power and Energy Conf., Xi'an, China, 2016, pp. 10791083.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0573
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0573
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address