access icon free Vulnerable transmission line identification using ISH theory in power grids

Vulnerable transmission lines are key points of cascading failures and blackouts. While the vulnerable transmission line identification is challenging due to the complexity of power system. This study puts forward a vulnerable transmission line identification method using the improved structural hole theory (named ISH method) in correlation networks, in which the interactive strengths among transmission lines under N − 1 check are considered. This method converts the vulnerable transmission line identification in power grids into key node evaluation in correlation networks. Since weighted state and structure correlation networks reflect the changes of transmission lines in operation states and topology structures before and after N − 1 check, this method is more accurate than other methods based on static complex grid. Besides, this method is very efficient for only local information is used when calculating the constraint coefficient of each node by means of the ISH theory. Numerical simulations on the IEEE-39 bus system and a regional grid of China verify the validity and accuracy of the ISH method by comparing with other methods.

Inspec keywords: power grids; correlation methods; numerical analysis; power transmission lines

Other keywords: topology structures; key node evaluation; regional grid; correlation networks; power system; structure correlation networks; IEEE-39 bus system; power grids; China; static complex grid; operation states; ISH theory; constraint coefficient; vulnerable transmission line identification; improved structural hole theory; N-1 check; weighted state networks; interactive strengths; numerical simulations; local information

Subjects: Other numerical methods; Power transmission, distribution and supply

References

    1. 1)
      • 23. Bompard, E., Napoli, R., Xue, F.: ‘Extended topological approach for the assessment of structural vulnerability in transmission networks’, IET. Gener. Transm. Distrib., 2010, 4, (6), pp. 716724.
    2. 2)
      • 22. Chen, G., Dong, Z.Y., Hill, D.J., et al: ‘An improved model for structural vulnerability analysis of power networks’, Phys. A., Stat. Mech. Appl., 2009, 388, (19), pp. 42594266.
    3. 3)
      • 3. Mei, S.W., Ni, Y.X., Wang, G., et al: ‘A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin’, IEEE Trans. Power Syst., 2008, 23, (4), pp. 17191726.
    4. 4)
      • 18. Dwivedi, A., Yu, X., Sokolowski, P.: ‘Identifying vulnerable lines in a power network using complex network theory’. 2009 IEEE Int. Symp. Industrial Electronics (ISIE 2009), Seoul, South Korea, July 2009, pp. 1823.
    5. 5)
      • 16. Zhu, Y.H., Sun, Y., He, H.B.: ‘Load distribution vector based attack strategies against power grid systems’. IEEE Global Communications Conf. (GLOBECOM), Anaheim, CA, December 2012, pp. 935941.
    6. 6)
      • 28. Han, Z.M., Wu, Y., Tan, X.S., et al: ‘Ranking key nodes in complex networks by considering structural holes’, Acta Phys. Sin., 2015, 64, (5), pp. 058902/19.
    7. 7)
      • 17. Zhu, Y.H., Yan, J., Tang, Y.F., et al: ‘Joint substation-transmission line vulnerability assessment against the smart grid’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (5), pp. 10101024.
    8. 8)
      • 13. Wang, W.K., Cai, Q., Sun, Y., et al: ‘Risk-aware attacks and catastrophic cascading failures in U.S. power grid’. Proc. of the 2011 IEEE Global Communications Conf., Kathmandu, Nepal, December 2011, pp. 16.
    9. 9)
      • 11. Cai, G.W., Chan, K.W., Yuan, W.P., et al: ‘Identification of the vulnerable transmission segment and cluster of critical machines using line transient potential energy’, Int. J. Electr. Power Energy Syst., 2007, 29, (3), pp. 199207.
    10. 10)
      • 24. Bompard, E., Wu, D., Xue, F.: ‘Structural vulnerability of power systems: a topological approach’, Electr. Power Syst. Res., 2011, 81, (7), pp. 13341340.
    11. 11)
      • 9. Fan, W.L., Liu, Z.G., Hu, P.: ‘A high robustness and low cost cascading failure model based on node importance in complex networks’, Mod. Phys. Lett. B, 2014, 28, (2), pp. 1450011/111.
    12. 12)
      • 33. Bompard, E., Napoli, R., Xue, F.: ‘Analysis of structural vulnerabilities in power transmission grids’, Int. J. Crit. Infrastruct. Prot., 2009, 2, (1/2), pp. 512.
    13. 13)
      • 34. Mei, S.W., Zhang, X.M., Cao, M.: ‘Power grid complexity’ (Springer Science & Business Media, 2011).
    14. 14)
      • 36. Pai, M.A.: ‘Energy function analysis for power system stability analysis by the direct method of Lyapunov’ (Kluwer Academic Publishers, Boston, 1968).
    15. 15)
      • 5. NERC: ‘August 14, 2003 blackout: NERC actions to prevent and mitigate the impacts of future cascading blackouts’ (NERC, Princeton, USA, 2004).
    16. 16)
      • 32. Granovetter, M.S.: ‘The strength of weak ties’, Am. J. Sociol., 1973, 2, pp. 13601380.
    17. 17)
      • 14. Zhu, Y.H., Yan, J., Sun, Y., et al: ‘Revealing cascading failure vulnerability in power grids using risk-graph’, IEEE Trans. Parallel Distrib. Syst., 2014, 25, (12), pp. 32743284.
    18. 18)
      • 6. Central Electricity Regulatory Commission: ‘Report on the grid disturbances on 30th July and 31st July 2012’. Available at http://www.cercind.gov.in, 08 August 2012.
    19. 19)
      • 20. Wang, Z.F., Scaglione, A., Thomas, R.J.: ‘Electrical centrality measures for electric power grid vulnerability analysis’. 49th IEEE Conf. on Decision and Control, Atlanta, GA, USA, December 2010, pp. 57925797.
    20. 20)
      • 21. Wang, K., Zhang, B., Zhang, Z., et al: ‘An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load’, Phys. A, Stat. Mech. Appl., 2011, 390, (23), pp. 46924701.
    21. 21)
      • 35. Dobson, I., Carreras, B.A., Lynch, V.E., et al: ‘An initial model for complex dynamics in electric power system blackouts’. Proc. 34th Annual Hawaii Int. Conf. System Sciences, Maui, Hawaii, January 2001, pp. 710718.
    22. 22)
      • 31. Pinar, A., Meza, J., Donde, V., et al: ‘Optimization strategies for the vulnerability analysis of the electric power grid’, SIAM J. Optim., 2010, 20, (4), pp. 17861810.
    23. 23)
      • 26. Burt, R.S., Kilduff, M., Tasselli, S.: ‘Social network analysis: foundations and frontiers on advantage’, Annual Rev. Psychol., 2013, 64, pp. 527547.
    24. 24)
      • 10. Salmeron, J., Wood, K., Baldick, R.: ‘Analysis of electric grid security under terrorist threat’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 905912.
    25. 25)
      • 2. Su, S., Duan, X.Z., Chan, W.L.: ‘Probability distribution of fault in distribution system’, IEEE Trans. Power Syst., 2008, 3, (23), pp. 15211522.
    26. 26)
      • 37. Fan, W.L., Huang, S.W., Mei, S.W.: ‘Invulnerability of power grids based on maximum flow theory’, Phys. A, Stat. Mech. Appl., 2016, 462, pp. 977985.
    27. 27)
      • 4. Mei, S.W., He, F., Zhang, X.M., et al: ‘An improved OPA model and blackout risk assessment’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 814823.
    28. 28)
      • 8. Bai, H., Miao, S.: ‘Hybrid flow betweenness approach for identification of vulnerable line in power system’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 13241331.
    29. 29)
      • 25. Burt, R.: ‘Structural holes: the social structure of competition’ (Harvard University Press, Boston, 1992).
    30. 30)
      • 15. Fan, W.L., Liu, Z.G., Hu, P., et al: ‘Cascading failure model in power grids using the complex network theory’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 39403949.
    31. 31)
      • 19. Chen, X., Sun, K., Cao, Y., et al: ‘Identification of vulnerable lines in power grid based on complex network theory’. 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, June 2007, pp. 16.
    32. 32)
      • 27. Su, X.P., Song, Y.R.: ‘Leveraging neighborhood ‘structural holes’ to identifying key spreaders in social networks’, Acta Phys. Sin., 2015, 64, (2), pp. 020101/111.
    33. 33)
      • 29. Chopade, P., Bikdash, M.: ‘New centrality measures for assessing smart grid vulnerabilities and predicting brownouts and blackouts’, Int. J. Crit. Infrastruct. Prot., 2016, 12, pp. 2945.
    34. 34)
      • 7. Song, J.J., Cotilla-Sanchez, E., Ghanavati, G., et al: ‘Dynamic modeling of cascading failure in power systems’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 20852095.
    35. 35)
      • 12. Fan, W.L., Hu, P., Liu, Z.G.: ‘Multi-attribute node importance evaluation method based on Gini-coefficient in complex power grids’, IET. Gener. Transm. Distrib., 2016, 10, (9), pp. 20272034.
    36. 36)
      • 1. Chen, L.J., Mei, S.W.: ‘An integrated control and protection system for photovoltaic microgrids’, CSEE J. Power Energy Syst., 2015, 1, (1), pp. 3642.
    37. 37)
      • 30. Chen, L.Y., Cohn, A., Fan, N., et al: ‘N-k-Ɛ survivable power system design’. arXiv:1201.1530v1, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0571
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0571
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading