Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fourier-series approach to model order reduction and controller interaction analysis of large-scale power system models

In this study, a comprehensive approach for model order reduction based on a Fourier series of a discrete system representation is proposed. The developed method represents an alternative to model reduction of large-scale dynamical systems and can be used for the analysis of unstable dynamic systems and the study of interactions among power system controls. Drawing on the principle of conformal mapping, the linearised system model is first transformed into its discrete equivalent. Then, the Fourier series of the discrete-time transfer function is used to obtain a reduced-order model (ROM). Using this model, approximate Hankel-based interaction measures are proposed to efficiently analyse large, unstable linear system representations and determine pairs of input outputs to design controller. The high degree of applicability and accuracy offered by the method, and its ability to extract ROMs from stable and unstable systems is demonstrated on three test systems.

References

    1. 1)
      • 16. Gu, G., Khargonekar, P.P., Lee, E.B.: ‘Approximation of infinite-dimensional systems’, IEEE Trans. Autom. Control, 1989, 34, (6), pp. 610618.
    2. 2)
      • 12. Qi, J., Wang, J., Liu, H., et al: ‘Nonlinear model reduction in power systems by balancing of empirical controllability and observability covariances’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 114126.
    3. 3)
      • 21. Saad, Y.: ‘Numerical methods for large eigenvalue problems: revised edition’ (SIAM, Manchester, UK, 2011).
    4. 4)
      • 14. Yang, J., Chen, C.S., De Abreu-Garcia, J.A., et al: ‘Model reduction of unstable systems’, Int. J. Syst. Sci., 1993, 24, (12), pp. 24072414.
    5. 5)
      • 8. Varricchio, S.L., Freitas, F.D., Martins, N., et al: ‘Computation of dominant poles and residue matrices for multivariable transfer functions of infinite power system models’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11311142.
    6. 6)
      • 10. Nabavi, S., Chakrabortty, A.: ‘Structured identification of reduced-order models of power systems in a differential-algebraic form’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 198207.
    7. 7)
      • 3. Khatibi, M., Amraee, T., Zargarzadeh, H., et al: ‘Comparative analysis of dynamic model reduction with application in power systems’. University Power Systems Conf., Clemson, SC, 2016, pp. 16.
    8. 8)
      • 19. Wittenmark, B., Salgado, M.E.: ‘Hankel-norm based interaction measure for input-output pairing’. 15th IFAC World Congress, Barcelona, Spain, 2002, pp. 429434.
    9. 9)
      • 22. Phillips, J.R., Silveira, L.M.: ‘Poor man's TBR: a simple model reduction scheme’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2005, 24, (1), pp. 4355.
    10. 10)
      • 2. Annakkage, U.D., Nair, N.C., Liang, Y., et al: ‘Dynamic system equivalents: a survey of available techniques’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 411420.
    11. 11)
      • 5. Zhu, Z., Geng, G., Jiang, Q.: ‘Power system dynamic model reduction based on extended Krylov subspace method’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 44834494.
    12. 12)
      • 11. Scarciotti, G.: ‘Low computational complexity model reduction of power systems with preservation of physical characteristics’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 743752.
    13. 13)
      • 18. Birk, W., Medvedev, A.: ‘A note on Gramian-based interaction measures’. European Control Conf., Cambridge, UK, 2003, pp. 26252630.
    14. 14)
      • 7. Smith, J.R., Fatehi, F., Woods, C.S., et al: ‘Transfer function identification in power system applications’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 12821290.
    15. 15)
      • 9. Li, C., Du, Z., Ni, Y., et al: ‘Reduced model-based coordinated design of decentralized power system controllers’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 21722181.
    16. 16)
      • 15. Gu, G., Khargonekhar, P.P., Lee, E.B., et al: ‘Finite-dimensional approximation of unstable infinite-dimensional systems’, SIAM J. Control Optim., 1992, 30, (3), pp. 704716.
    17. 17)
      • 24. Rergis, C.M., Betancourt, R.J., Messina, A.R.: ‘Order reduction of power systems by modal truncated balanced realization’, Electr. Power Compon. Syst., 2017, 45, (2), pp. 147158.
    18. 18)
      • 17. Willcox, K., Megretski, A.: ‘Fourier series for accurate, stable, reduced-order models in large-scale linear applications’, SIAM J. Sci. Comput., 2005, 26, (3), pp. 944962.
    19. 19)
      • 27. Betancourt, R.J., Barocio, E., Messina, A.R., et al: ‘Modal analysis of inter-area oscillations using the theory of normal modes’, Electr. Power Syst. Res., 2009, 79, (4), pp. 576585.
    20. 20)
      • 1. Chow, J.H.: ‘Power systems coherency and model reduction’ (Springer, New York, NY, USA, 2013).
    21. 21)
      • 20. Chung, C.Y., Dai, B.: ‘A generalized approach for computing most sensitive eigenvalues with respect to system parameter changes in large-scale power systems’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 22782288.
    22. 22)
      • 25. Rergis, C.M., Messina, A.R., Betancourt, R.J.: ‘Fourier-based accurate reduced-order model for linear power systems applications’. IEEE PES Transmission & Distribution Conf. and Exposition – Latin America, Morelia, Mexico, October 2016, pp. 16.
    23. 23)
      • 13. Zhou, K., Salomon, G., Wu, E.: ‘Balanced realization and model reduction for unstable systems’, Int. J. Robust Nonlinear Control, 1999, 9, (3), pp. 183198.
    24. 24)
      • 29. Mccrimmon, K.: ‘Jordan algebras and their applications’, Bull. Am. Math. Soc., 1978, 84, (4), pp. 612627.
    25. 25)
      • 26. Rogers, G.: ‘Power system oscillations’ (Springer, Norwell, MA, USA, 2000).
    26. 26)
      • 6. Sturk, C., Vanfretti, L., Chompoobutrgool, Y., et al: ‘Coherency-independent structured model reduction of power systems’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 24182426.
    27. 27)
      • 4. Freitas, F.D., Rommes, J., Martins, N.: ‘Gramian-based reduction method applied to large sparse power system descriptor models’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 12581270.
    28. 28)
      • 28. Messina, A.R., Begovich, O., López, J.H., et al: ‘Design of multiple FACTS controllers for damping inter-area oscillations: a decentralized control approach’, Electr. Power Energy Syst., 2004, 26, pp. 1929.
    29. 29)
      • 23. Sorensen, D.C.: ‘Implicit application of polynomial filters in a k-step Arnoldi method’, SIAM J. Matrix Anal. Appl., 1992, 13, (1), pp. 357385.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0465
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0465
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address