access icon free Uncertainty level of voltage in distribution network: an interval model and application in centralised storage location

Intermittent distributed generations, stochastic loads and other uncertainties have uncertain impacts on the node voltages in distribution network. To quantitatively assess the impact boundaries of uncertainties on node voltages, an interval model is proposed in this study from the perspective of linear description. The model parameters defined as the voltage influence intervals are solved for as follows: first, conduct the analysis sample collection through the affine power flow and the expected operating point estimated by point-estimate method; then, calculate the voltage influence intervals via interval regression for the above sample. To meet the different demand of solving efficiency and conservative level for parameter identification, two solution methods of interval regression based on quadratic programming and stochastic programming are proposed, respectively. To further illustrate the practical application of the interval model, an optimal location method for centralized energy storage is presented. The verification results based on the modified IEEE 33-bus system and practical 113-bus system demonstrate the interval model and its solution methods have an excellent performance in assessing the impact boundaries of uncertainties. The application case also shows that the proposed decision method can produce a global and robust location scheme with considering the bound uncertainty of distributed generation output fluctuations.

Inspec keywords: energy storage; regression analysis; stochastic programming; load flow; quadratic programming; distribution networks; decision theory; distributed power generation

Other keywords: interval model; linear description; quadratic programming; interval regression; IEEE 33-bus system; centralised energy storage; parameter identification; Intermittent distributed generations; optimal location method; robust location scheme; IEEE 113-bus system; stochastic programming; centralised storage location; distribution network; stochastic loads; global location scheme; point-estimate method; distributed generation output fluctuation bound uncertainty; voltage influence intervals; affine power flow; decision method; node voltages; voltage Uncertainty level

Subjects: Other energy storage; Distributed power generation; Optimisation techniques; Distribution networks; Game theory

References

    1. 1)
      • 4. Shahnia, F., Majumder, R., Ghosh, A., et al: ‘Voltage imbalance analysis in residential low voltage distribution networks with rooftop PVs’, Electr. Power Syst. Res., 2011, 81, (9), pp. 18051814.
    2. 2)
      • 5. Morales, J., Conejo, L., Conejo, A., et al: ‘Probabilistic power flow with correlated wind sources’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 641651.
    3. 3)
      • 12. Vaccaro, A., Canizares, C., Villacci, D.: ‘An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 624632.
    4. 4)
      • 21. Moore, R.E.: ‘Methods and applications of interval analysis’ (SIAM, Philadelphia, 1979).
    5. 5)
      • 8. Wang, S., Wang, C., Liu, R.: ‘Fuzzy interval algorithm based computation of power flow in distribution network’, Autom. Electr. Power Syst., 2000, 24, (20), pp. 1922.
    6. 6)
      • 19. Mohammadi, F., Gholami, H., Gharehpetian, G.B., et al: ‘Allocation of centralized energy storage system and its effect on daily grid energy generation cost’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 24062416.
    7. 7)
      • 18. Kovaltchouk, T., Blavette, A., Aubry, J., et al: ‘Comparison between centralized and decentralized storage energy management for direct wave energy converter farm’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 10511058.
    8. 8)
      • 14. Wang, S., Han, L., Wu, L.: ‘Uncertainty tracing of distributed generations via complex affine arithmetic based unbalanced three-phase power flow’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 30533062.
    9. 9)
      • 6. Ai, X., Wen, J., Wu, T., et al: ‘A discrete point estimate method for probabilistic load flow based on the measured data of wind power’, IEEE Trans. Ind. Appl., 2012, 49, (49), pp. 22442252.
    10. 10)
      • 1. Martins, V., Borges, C.: ‘Active distribution network integrated planning incorporating distributed generation and load response uncertainties’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 21642172.
    11. 11)
      • 11. Wang, S., Han, L.: ‘Complex affine arithmetic based method for the analyses of DG's uncertainty influence on distribution network’, Proc. of CSEE, 2014, 34, (31), pp. 55075515.
    12. 12)
      • 9. Wang, Z., Alvarado, F.: ‘Interval arithmetic in power flow analysis’, IEEE Trans. Power Syst., 1992, 7, (3), pp. 13411349.
    13. 13)
      • 22. Manson, G: ‘Calculating frequency response functions for uncertain systems using complex affine analysis’, J. Sound Vib., 2005, 288, (3), pp. 487521.
    14. 14)
      • 24. Wu, W.C., Zhang, B.M.: ‘A three-phase power flow algorithm for distribution system power flow based on loop-analysis method’, Int. J. Electr. Power Energy Syst., 2008, 30, (1), pp. 815.
    15. 15)
      • 23. Shirmohammadi, D., Hong, H.W., Semlyen, A., et al: ‘A compensation-based power flow method for weakly meshed distribution and transmission networks’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753762.
    16. 16)
      • 17. Suazo-Martínez, C., Pereira-Bonvallet, E., Palma-Behnke, R., et al: ‘Impacts of energy storage on short term operation planning under centralized spot markets’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 11101118.
    17. 17)
      • 15. Chen, P., Tao, S., Xiao, X., et al: ‘Uncertainty level of voltage in distribution network: an analysis model with elastic net and application in storage configuration’, IEEE Trans. Smart Grid, PP, (99), pp. 11.
    18. 18)
      • 2. Tani, A., Camara, M.B., Dakyo, B.: ‘Energy management in the decentralized generation systems based on renewable energy-ultracapacitors and battery to compensate the wind/load power fluctuations’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 18171827.
    19. 19)
      • 3. Demailly, F., Ninet, O., Even, A.: ‘Numerical tools and models for Monte Carlo studies of the influence on embedded generation on voltage limits in LV grids’, IEEE Trans. Power Deliv.., 2005, 20, (3), pp. 23432350.
    20. 20)
      • 16. Wen, S., Lan, H., Fu, Q., et al: ‘Economic allocation for energy storage system considering wind power distribution’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 644652.
    21. 21)
      • 20. Shen, X., Shahidehpour, M., Han, Y., et al: ‘Expansion planning of active distribution networks with centralized and distributed energy storage systems’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 126134.
    22. 22)
      • 25. Tanaka, H., Koyama, K., Haekwan, L.: ‘Interval regression analysis based on quadratic programming’. Proc. of IEEE 5th Int. Fuzzy Systems, New Orleans, LA, September 1996, pp. 325329.
    23. 23)
      • 7. Matos, A., Gouveia, M.: ‘The fuzzy power flow revisited’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 213218.
    24. 24)
      • 10. Wang, S., Xu, Q., Zhang, G., et al: ‘Modeling of wind speed uncertainty and interval power flow analysis for wind farms’, Autom. Electr. Power Syst., 2009, 33, (21), pp. 8286.
    25. 25)
      • 13. Ding, T., Cui, H., Gu, W., et al: ‘An uncertainty power flow algorithm based on interval and affine arithmetic’, Autom. Electr. Power Syst., 2012, 36, (13), pp. 5155.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0445
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0445
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading