Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High-frequency transient comparison based fault location in distribution systems with DGs

Distributed generations (DGs) in the distribution systems are connected into the buses using power electronic converters. During fault, it is challenging to provide a constant impedance model for DGs in the system frequency due to the variable converter control strategies. System frequency impedance measurement based fault locations can be influenced by the converters’ fault behaviour. This study addresses this problem by proposing a wide-area high-frequency impedance comparison based fault location technique. The high-frequency impedance model of DG is provided. Based on the constant DG impedance model in high-frequency range, the faulted line sections can be distinguished by comparing the measured impedance differences without requiring the exact distribution system parameters. Simulation results show that the proposed wide-area transient measurements based fault location method can provide accurate faulted sections in the distribution systems with DGs regardless of the load and DG output variations, measurement noise, unbalanced loads and islanding operations.

References

    1. 1)
      • 4. Takagi, T., Yamakoshi, Y., Yamaura, M., et al: ‘Development of a new type fault locator using the one-terminal voltage and current data’, IEEE Trans. Power Appar. Syst., 1982, 101, pp. 11161123.
    2. 2)
      • 2. Senjyu, T., Miyazato, Y., Yona, A.: ‘Optimal distribution voltage control and coordination with distributed generation’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 12361242.
    3. 3)
      • 11. Lee, S.J., Choi, M.S., Kang, S.H., et al: ‘An intelligent and efficient fault location and diagnosis scheme for radial distribution systems’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 524532.
    4. 4)
      • 33. IEEE 123 Node Test Feeder’. IEEE PES Distribution System Analysis Subcommittee's Distribution Test Feeder Working Group, Technical Report, September 2011.
    5. 5)
      • 15. Nouri, H., Alamuti, M.M.: ‘Comprehensive distribution network fault location using the distributed parameter’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 21542162.
    6. 6)
      • 16. Florez, J.J., Orozco, R.A., Bedoya-Cadena, A.: ‘Fault location considering load uncertainty and distributed generation in power distribution systems’, IET Gener. Transm. Distrib., 2015, 9, (3), pp. 287295.
    7. 7)
      • 14. Salim, R.H., Resener, M., Filomena, A.D., et al: ‘Extended fault-location formulation for power distribution systems’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 508516.
    8. 8)
      • 9. Das, R.: ‘Determining the locations of faults in distribution systems’. PhD dissertation, University of Saskatchewan, Saskatoon, SK, Canada, 1998.
    9. 9)
      • 1. Venkata, S.S., Hatziargyrlou, N.: ‘Grid resilience elasticity is needed when facing catastrophes’, IEEE Power Energy Mag., 2015, 13, (3), pp. 1620.
    10. 10)
      • 12. España, G.M., Florez, J., Torres, H.V.: ‘Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements’, IEEE Trans. Power Deliv., 2009, 264, (3), pp. 13821389.
    11. 11)
      • 26. Brahma, S.M.: ‘Fault location in power distribution system with penetration of distributed generation’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 15451553.
    12. 12)
      • 17. Ren, J., Venkata, S.S., Sortomme, E.: ‘An accurate synchrophasor based fault location method for emerging distribution systems’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 297298.
    13. 13)
      • 7. Zhu, J., Lubkeman, D. L., Girgis, A.A.: ‘Automated fault location and diagnosis on electric power distribution feeders’, IEEE Trans. Power Deliv., 1997, 12, (2), pp. 801809.
    14. 14)
      • 28. Perera, N., Rajapakse, A.D., Buchholzer, T.E.: ‘Isolation of faults in distribution networks with distributed generators’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 15451553.
    15. 15)
      • 31. Jia, K., Bi, T., Ren, Z., et al: ‘High frequency impedance based fault location in distribution system with DGs’, IEEE Trans. Smart Grid, PP, (99), pp. 11, DOI: 10.1109/TSG.2016.2566673.
    16. 16)
      • 8. Das, R., Sachdev, M.S., Sidhu, T.S.: ‘A technique for estimating locations of shunt faults on distribution lines’. Proc. 1995 IEEE Communications, Power, Computing Conf., pp. 611.
    17. 17)
      • 23. Dong, Y., Zheng, C., Kezunovic, M.: ‘Enhancing accuracy while reducing computation complexity for voltage-sag-based distribution fault location’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 251260.
    18. 18)
      • 27. Chen, P., Malbasa, V., Dong, Y., et al: ‘Sensitivity analysis of voltage sag based fault location with distributed generation’, IEEE Trans. Smart Grid, 2014, 6, (4), pp. 20982106.
    19. 19)
      • 34. Aguero, J.R.: ‘Applications of smart grid technologies on power distribution systems’. Proc. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), p. 1.
    20. 20)
      • 19. Pereira, R.A.F., Silva, L.G.W., Kezunovic, M., et al: ‘Improved fault location on distribution feeders based on matching during-fault voltage sags’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 852862.
    21. 21)
      • 6. Girgis, A., Fallon, C., Lubkeman, D.L.: ‘A fault location technique for rural distribution feeders’, IEEE Trans. Ind. Appl., 1993, 34, (29), pp. 11701175.
    22. 22)
      • 13. Florez, J.M., Nunez, V.B., Caicedo, G.C.: ‘Fault location in power distribution systems using a learning algorithm for multivariable data analysis’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 17151721.
    23. 23)
      • 22. Reddy, M., Rajesh, D., Gopakumar, P., et al: ‘Smart fault location for smart grid operation using RTUs and computational intelligence techniques’, IEEE Trans. Smart Grid, 2014, 8, (4), pp. 12601271.
    24. 24)
      • 21. Lotfifard, S., Kezunovic, M., Mousavi, M.J.: ‘Voltage sag data utilization for distribution fault location’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 12391246.
    25. 25)
      • 20. Tayjasanant, T., Li, C., Xu, W.: ‘A resistance sign-based method for voltage sag source detection’, IEEE Trans. Power Deliv., 2005, 20, (4), pp. 25442551.
    26. 26)
      • 24. Majidi, M., Arabali, A., Etezadi-Amoli, M.: ‘Fault location in distribution networks by compressive sensing’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 17611769.
    27. 27)
      • 10. Choi, M.S., Lee, S.J., Lee, D.S., et al: ‘A new fault location algorithm using direct circuit analysis for distribution systems’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 3541.
    28. 28)
      • 30. Borghetti, A., Bosetti, M., Silvestro, M.D., et al: ‘Continuous-wavelet transform for fault location in distribution power networks: definition of mother wavelets inferred from fault originated transients’, IEEE Trans. Power Deliv., 2008, 23, pp. 380388.
    29. 29)
      • 32. Bao, X., Zhuo, F., Tian, Y., et al: ‘Simplified feedback linearization control of three-phase photovoltaic inverter with an LCL filter’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 27392752.
    30. 30)
      • 5. Srinivasan, K., St-Jacques, A.: ‘A new fault location algorithm for radial transmission lines with loads’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16761682.
    31. 31)
      • 18. Galijasevic, Z., Abur, A.: ‘Fault location using voltage measurements’, IEEE Trans. Power Deliv., 2001, 17, (2), pp. 441445.
    32. 32)
      • 29. Magnago, F.H., Abur, A.: ‘Fault location using wavelets’, IEEE Trans. Power Deliv., 1998, 13, (4), pp. 14751480.
    33. 33)
      • 3. Takagi, T., Yamakoshi, Y., Baba, J., et al: ‘A new algorithm of an accurate fault location for EHV/UHV transmission lines part I – Fourier transformation method’, IEEE Trans. Power Appar. Syst., 1981, 100, pp. 13161323.
    34. 34)
      • 25. Majidi, M., Amoli, M., Fadali, M.: ‘A novel method for single and simultaneous fault location in distribution networks’, IEEE Trans. Power Deliv., 2015, 30, (6), pp. 33683376.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0426
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address