http://iet.metastore.ingenta.com
1887

Non-cooperative and cooperative optimisation of battery energy storage system for energy management in multi-microgrid

Non-cooperative and cooperative optimisation of battery energy storage system for energy management in multi-microgrid

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multi-microgrid is an integrated system of microgrids, distributed generations, and battery energy storage system (BESS). As the significant equipment in microgrid, BESS can perform multitasking, such as load management and peak shaving. This study mainly focuses on the energy consumption scheduling of multi-microgrid considering the optimisation of BESS capacity. Energy management with BESS optimisation is studied by considering the cost of distributed generations, cost of BESS, and bidirectional energy trading. The optimisation problem is tackled from two different aspects: an individual-oriented optimisation and a coalition-based optimisation. In the first approach, each microgrid is optimised individually with a non-cooperative game; while in the second approach, the joint optimisation of all microgrids is formulated through cooperation among multi-microgrids. In order to achieve the optimal energy consumption strategy and BESS capacity, distributed algorithms for two formulations are presented, which combine particle swarm optimisation and interior point method. Simulation results show that both approaches can contribute to peak shaving and reducing the daily cost of multi-microgrid.

References

    1. 1)
      • 1. Llaria, A., Curea, O., Jimĺęnez, J.: ‘Survey on microgrids: unplanned islanding and related inverter control techniques’, Renew. Energy, 2015, 36, (8), pp. 20522061.
    2. 2)
      • 2. Balaguer, I.J., Lei, Q., Yang, S.: ‘Control for grid-connected and intentional islanding operations of distributed power generation’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 147157.
    3. 3)
      • 3. Guerrero, J.M., Blaabjerg, F., Zhelev, T.: ‘Distributed generation: toward a new energy paradigm’, IEEE Ind. Electron. Mag., 2010, 4, (1), pp. 5264.
    4. 4)
      • 4. Hatziargyriou, N.D., Meliopoulos, A.P.S.: ‘Distributed energy sources: technical challenges’. IEEE Power Engineering Society Winter Meeting, New York, NY, USA, January 2002, pp. 10171022.
    5. 5)
      • 5. Smallwood, C.L.: ‘Distributed generation in autonomous and nonautonomous micro grids’. Rural Electric Power Conf., Colorado Springs, CO, USA, May 2002, pp. D1-1D1-6.
    6. 6)
      • 6. Hatziargyriou, N., Asano, H., Iravani, R.: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    7. 7)
      • 7. Lopes, J.A.P., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    8. 8)
      • 8. Barsali, S., Ceraolo, M., Pelacchi, P.: ‘Control techniques of dispersed generators to improve the continuity of electricity supply’. IEEE Power Engineering Society Winter Meeting, New York, NY, USA, January 2002, pp. 789794.
    9. 9)
      • 9. Pascual, J., Barricarte, J., Sanchis, P.: ‘Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting’, Appl. Energy, 2015, 158, pp. 1225.
    10. 10)
      • 10. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T.: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    11. 11)
      • 11. Dell, R.M., Rand, D.A.J.: ‘Energy storage – a key technology for global energy sustainability’, J. Power Sources, 2001, 100, (1), pp. 217.
    12. 12)
      • 12. Aamir, M., Kalwar, K.A., Mekhilef, S.: ‘Review: uninterruptible power supply (UPS) system’, Renew. Sust. Energy Rev., 2016, 58, pp. 13951410.
    13. 13)
      • 13. Rajasekharan, J, Koivunen, V.: ‘Optimal energy consumption model for smart grid households with energy storage’, IEEE J. Sel. Top. Signal Process., 2014, 8, (6), pp. 11541166.
    14. 14)
      • 14. Kim, A.R., Seo, H.R., Kim, G.H.: ‘Operating characteristic analysis of HTS SMES for frequency stabilization of dispersed power generation system’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 13341338.
    15. 15)
      • 15. Zhou, H., Bhattacharya, T., Tran, D.: ‘Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 923930.
    16. 16)
      • 16. Koohi-Kamali, S., Rahim, N.A., Mokhlis, H.: ‘Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load’, Energy Convers. Manage., 2014, 84, pp. 562582.
    17. 17)
      • 17. Venayagamoorthy, G.K, Sharma, R.K, Gautam, P.K.: ‘Dynamic energy management system for a smart microgrid’, IEEE Trans. Neural Networks Learn. Syst., 2016, 27, (8), pp. 16431656.
    18. 18)
      • 18. Pourmousavi, S.A., Nehrir, M.H., Colson, C.M.: ‘Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization’, IEEE Trans. Sustain. Energy, 2010, 1, (3), pp. 193201.
    19. 19)
      • 19. Nguyen, T.A., Crow, M.L., Elmore, A.C.: ‘Optimal sizing of a vanadium redox battery system for microgrid systems’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 729737.
    20. 20)
      • 20. Xiao, H., Bo, W., Yang, Y.: ‘Energy storage capacity optimization for microgrid considering battery life and economic operation’, High Volt. Eng., 2015, 41, (10), pp. 32563265.
    21. 21)
      • 21. Nguyen, T.A., Crow, M.L.: ‘Stochastic optimization of renewable-based microgrid operation incorporating battery operating cost’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 22892296.
    22. 22)
      • 22. Saad, W., Han, Z., Poor, H.V.: ‘Game-theoretic methods for the smart grid: an overview of microgrid systems, demand-side management, and smart grid communications’, IEEE Signal Process. Mag., 2012, 29, (5), pp. 86105.
    23. 23)
      • 23. Soliman, H.M., Leon-Garcia, A.: ‘Game-theoretic demand-side management with storage devices for the future smart grid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14751485.
    24. 24)
      • 24. Mohsenian-Rad, A.H., Wong, V.W.S., Jatskevich, J.: ‘Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    25. 25)
      • 25. Samadi, P., Mohsenian-Rad, H., Schober, R.: ‘Advanced demand side management for the future smart grid using mechanism design’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 11701180.
    26. 26)
      • 26. Baharlouei, Z., Hashemi, M.: ‘Efficiency-fairness trade-off in privacy-preserving autonomous demand side management’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 799808.
    27. 27)
      • 27. Gao, B., Zhang, W., Tang, Y.: ‘Game-theoretic energy management for residential users with dischargeable plug-in electric vehicles’, Energies, 2014, 7, (11), pp. 74997518.
    28. 28)
      • 28. Kahrobaee, S., Asgarpoor, S., Qiao, W.: ‘Optimum sizing of distributed generation and storage capacity in smart households’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 17911801.
    29. 29)
      • 29. Su, J., Zhou, L., Li, R.: ‘Cost-benefit analysis of distributed grid-connected photovoltaic power generation’, Proc. Chin. Soc. Electr. Eng., 2013, 33, (34), pp. 5056.
    30. 30)
      • 30. Zhang, M., Xie, Q., Li, L.: ‘Optimal sizing of energy storage for microgrids considering energy management of electric vehicles’, Proc. Chin. Soc. Electr. Eng., 2015, 35, (18), pp. 46634673.
    31. 31)
      • 31. Ding, M., Wang, B., Zhao, B.: ‘Configuration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgrid’, Power Syst. Technol., 2013, 37, (3), pp. 575581.
    32. 32)
      • 32. Rosen, J.B.: ‘Existence and uniqueness of equilibrium points for concave n-person games’, Econometrica, 1965, 33, (3), pp. 520534.
    33. 33)
      • 33. Saad, W, Han, Z, Debbah, M, et al: ‘Coalitional game theory for communication networks’, IEEE Signal Process. Mag., 2009, 26, (5), pp. 7797.
    34. 34)
      • 34. Esmin, A.A.A., Lambert-Torres, G., De Souza, A.C.Z.: ‘A hybrid particle swarm optimization applied to loss power minimization’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 859866.
    35. 35)
      • 35. Kerdphol, T., Fuji, K., Mitani, Y.: ‘Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 3239.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0401
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0401
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address