access icon free Improved robust adaptive backstepping control approach on STATCOM for non-linear power systems

The problem of large disturbance attenuation in the single-machine infinite-bus system with a static synchronous compensator (STATCOM) is proposed to be alleviated by an improved robust backstepping algorithm, which utilises error compensation and sliding mode variable structure control methods to achieve stability. For STATCOM systems with internal and external disturbances, the adaptive backstepping method is used to construct the storage function, and a non-linear gain interference rejection controller and parameter substitution law are applied simultaneously. The improved method differs from the traditional adaptive backstepping design in terms of error-compensation design methodology, in order to ensure robustness and insensitivity to large disturbances of the STATCOM system, and furthermore, preserving useful non-linearities and the real-time estimation of uncertain parameters. Finally, a simulation demonstrates that the improved method is more efficient than traditional adaptive backstepping with respect to the speed of adaptation and the response of the STATCOM system. Hence, the effectiveness and practicality of the proposed control method is demonstrated by engineers in applications.

Inspec keywords: error compensation; variable structure systems; adaptive control; robust control; static VAr compensators

Other keywords: static synchronous compensator; nonlinear power systems; disturbance attenuation; error compensation; sliding mode variable structure control method; STATCOM systems; improved robust adaptive backstepping control approach; adaptation speed; external disturbance; single-machine infinite-bus system; parameter substitution law; real- time estimation; storage function; nonlinear L2 gain interference rejection controller; internal disturbance

Subjects: Other power apparatus and electric machines; Control of electric power systems; Stability in control theory; Self-adjusting control systems; Multivariable control systems

References

    1. 1)
      • 19. Xie, J., Zhao, J.: ‘Model reference adaptive control for switched LPV systems and its application’, IET Control Theory Appl., 2016, 10, (17), pp. 22042212.
    2. 2)
      • 3. Jiang, N., Li, S., Liu, T., et al: ‘Nonlinear large disturbance attenuation controller design for the power systems with STATCOM’, Appl. Math. Comput., 2013, 219, (20), pp. 1037810386.
    3. 3)
      • 28. Sun, L.Y., Liu, Y.: ‘Nonlinear adaptive backstepping controller design for static var compensator’, Chinese Control and Decision Conf., 2010, pp. 30133018.
    4. 4)
      • 6. Niu, B., Liu, L., Liu, Y.: ‘Adaptive backstepping-based fuzzy tracking control scheme for output-constrained nonlinear switched lower triangular systems with time-delays’, Neurocomputing, 2016, 175, pp. 759767.
    5. 5)
      • 29. Chen, Q., Ren, X.M., Na, J.: ‘Adaptive backstepping control of chaotic system with uncertain parameters’, Trans. Beijing Inst. Technol., 2011, 31, (31), pp. 158162.
    6. 6)
      • 12. Fei, J., Ding, H.: ‘Adaptive sliding mode control of dynamic system using RBF neural network’, Nonlinear Dyn.., 2012, 70, (2), pp. 15631573.
    7. 7)
      • 25. Ma, R., Zhao, J.: ‘Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings, Automatica, 2010, 46, (11), pp. 18191823.
    8. 8)
      • 7. Niu, B., Zhao, J.: ‘Robust H control for a class of switched nonlinear cascade systems via multiple Lyapunov functions approach’, Appl. Math. Comput., 2012, 218, (11), pp. 63306339.
    9. 9)
      • 27. Wan, Y., Zhao, J., Dimirovski, G.M.: ‘Robust adaptive control for a single-machine infinite-bus power system with an SVC’, Control Eng. Pract., 2014, 30, (SI), pp. 132139.
    10. 10)
      • 30. Slotine, J.E., Li, W.P.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, 1991, 1st edn.), pp. 230351.
    11. 11)
      • 18. Sun, L.Y., Tong, S., Liu, Y.: ‘Adaptive backstepping sliding mode H control of static var compensator’, IEEE Trans. Control Syst. Technol., 2011, 19, (5), pp. 11781185.
    12. 12)
      • 16. Wan, Y., Zhao, J.: ‘Extended backstepping method for single-machine infinite-bus power systems with SMES’, IEEE Trans. Control Syst. Technol., 2013, 21, (3), pp. 915923.
    13. 13)
      • 21. Dong, X.J., Li, S.T., Jiang, N.: ‘Adaptive control of steam valve of multi-machine power systems’. IEEE Control and Decision Conf., 2013, pp. 39303934.
    14. 14)
      • 14. Chen, L., Liu, M., Fu, S.: ‘Adaptive sliding mode control for stochastic jump systems against sensor and actuator failures’, IET Control Theory Appl., 2016, 10, (16), pp. 20002009.
    15. 15)
      • 26. Su, Q.Y., Quan, W.Z., Cai, G.W., et al: ‘An improved adaptive backstepping sliding mode control for generator steam valves of nonlinear power systems’, IET Control Theory Appl., 2017, 11, (9), pp. 14141419.
    16. 16)
      • 8. Wan, Y., Roy, S., Saberi, A., et al: ‘The design of multi-lead-compensators for stabilization and pole placement in double-integrator networks under saturation’, Am. Control Conf., 2009, 55, (12), pp. 35123518.
    17. 17)
      • 17. Li, W.L., Jing, Y.W., Liu, X.P.: ‘Adaptive robust backstepping design for nonlinear steam valve controller’, Proc. CSEE, 2003, 23, (1), pp. 155158.
    18. 18)
      • 2. Lu, Q., Mei, S.W.: ‘Modern power system control commentary’, J. Syst. Sci. Math. Sci., 2012, 32, (10), pp. 12071225.
    19. 19)
      • 15. Sun, L.Y., Zhao, J.: ‘Adaptive coordinated passivation control for generator excitation and thyristor controlled series compensation system’, Control Eng. Pract., 2009, 17, pp. 766772.
    20. 20)
      • 1. Lu, Q., Sun, Y.Z.: ‘Nonlinear control of power systems’ (Science Press, Beijing, China, 2008, 2nd edn.).
    21. 21)
      • 22. Niu, B., Zhao, X., Fan, X., et al: ‘A new control method for state-constrained nonlinear switched systems with application to chemical process’, Int. J. Control, 2015, 88, (9), pp. 16931701.
    22. 22)
      • 4. Fu, J., Ma, R., Chai, T.: ‘Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers’, Automatica, 2015, 54, (C), pp. 360373.
    23. 23)
      • 20. Jiang, N., Liu, B., Jing, Y.W.: ‘Nonlinear steam valve adaptive controller design for the power systems’, Int. J. Intell. Control Autom., 2011, 42, pp. 3137.
    24. 24)
      • 13. Fei, J., Yan, W.: ‘Adaptive control of MEMS gyroscope using global fast terminal sliding mode control and fuzzy neural network’, Nonlinear Dyn., 2014, 78, (1), pp. 103116.
    25. 25)
      • 11. Li, Y., Tong, S., Li, T.: ‘Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation’, IEEE Trans. Cybern., 2015, 45, (10), pp. 22992308.
    26. 26)
      • 23. Wan, Y., Zhao, J., Dimirovski, G.M.: ‘Nonlinear adaptive control for multi-machine power systems with boiler-turbine-generator unit’, Int. Trans. Electr. Energy Syst., 2015, 25, (5), pp. 859875.
    27. 27)
      • 9. Zhao, L.H., Shi, G.O.: ‘A model following control system for nonlinear descriptor systems’, J. Northeast Dianli Univ., 2012, 32, (4), pp. 8790.
    28. 28)
      • 10. Li, Y., Tong, S., Li, T.: ‘Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation’, IEEE Trans. Fuzzy Syst., 2016, 24, (4), pp. 841853.
    29. 29)
      • 24. Zhao, X., Zheng, X., Niu, B.: ‘Adaptive tracking control for a class of uncertain switched nonlinear systems’, Automatica, 2015, 52, (C), pp. 185191.
    30. 30)
      • 5. Sun, L.Y., Feng, J.X., Zhao, J.: ‘Design of a nonlinear robust controller for STATCOM’, J. Northeastern Univ., 2009, 30, (4), pp. 466470.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0335
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0335
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading