access icon free Determination of mode shapes in PMU signals using two-stage mode decomposition and spectral analysis

This study presents a dynamic approach for determining mode shape using time-domain signal. Signal processing techniques, mode decomposition, and spectral analysis are used here. The quality of signal affects the performance of spectral analysis, especially for estimation of low-frequency modes. Therefore, before applying spectral analysis, low-frequency modes are extracted using mode decomposition technique, so that the decomposed modes (DMs) may indicate centre frequency in its spectrum. In the study, two-stage mode decomposition approach is proposed for accurate and effective mode decomposition. The power spectral density (PSD) and cross-PSD tools are used to process DMs for estimation of mode frequency and determination of mode shape, respectively. The proposed dynamic approach is tested on simulated signals of IEEE 16-machine 68-bus test system and real-time phasor measurement units (PMUs) signal. The results obtained using proposed dynamic approach on simulated signals are compared with those obtained by steady-state approach, i.e. eigenvalue analysis.

Inspec keywords: time-domain analysis; power measurement; spectral analysis

Other keywords: centre frequency; simulated signals; mode shape; steady-state approach; time-domain signal; cross-PSD tools; PMU signals; eigenvalue analysis; mode frequency; low-frequency modes; signal processing techniques; two-stage mode decomposition approach; power spectral density; IEEE 16-machine determination; dynamic approach; real-time phasor measurement units

Subjects: Signal processing and detection; Mathematical analysis; Power and energy measurement

References

    1. 1)
      • 22. Mallat, S.: ‘A wavelet tour of signal processing – a sparse way’ (Elsevier, Academic Press, 2009, 3rd edn).
    2. 2)
      • 5. Barocio, E., Canizares, C., Chow, J.H., et al: ‘Identification of electromechanical modes in power systems’. IEEE Task Force Report, Special Publication TP462, IEEE Power and Energy Society, 2012.
    3. 3)
      • 7. Report on power system oscillations experienced in Indian Grid on 9th, 10th, 11th and 12th August 2014’. Task Force Report, Power System Operation Corporation Limited, New Delhi, 2014.
    4. 4)
      • 6. Yang, D., Rehtanz, C., Li, Y., et al: ‘A hybrid method and its applications to analyse the low frequency oscillations in the interconnected power system’, IET. Gener. Transm. Distrib., 2013, 7, (8), pp. 874884.
    5. 5)
      • 20. Dosiek, L., Zhou, N., Pierre, J.W., et al: ‘Mode shape estimation algorithms under ambient conditions: a comparative review’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 779787.
    6. 6)
      • 19. Sun, K., Zhou, Q., Liu, Y.: ‘A phase locked loop-based approach to real-time modal analysis on synchrophasor measurements’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 260269.
    7. 7)
      • 8. Trudnowski, D.: ‘Estimating electromechanical mode shape from synchrophasor measurements’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 11881195.
    8. 8)
      • 15. Sarkar, T.K., Pereira, O.: ‘Using the matrix pencil method to estimate the parameters of a sum of complex exponentials’, IEEE Antennas Propag. Mag., 1995, 37, (1), pp. 4855.
    9. 9)
      • 16. Vahidnia, A., Ledwich, G., Palmer, E., et al: ‘Generator coherency and area detection in large power systems’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 874883.
    10. 10)
      • 1. Knuppel, T., Nielsen, J.N., Jensen, K., et al: ‘Small-signal stability of wind power system with full-load converter interfaced wind turbines’, IET Renew. Power Gener., 2012, 6, (2), pp. 7991.
    11. 11)
      • 14. Bhuiyan, M., Malyarenko, E.V., Pantea, M.A., et al: ‘Advantages and limitations of using matrix pencil method for the modal analysis of medical percussion signals’, IEEE Trans. Biomed. Eng., 2013, 60, (2), pp. 417426.
    12. 12)
      • 3. Gibbard, M.J., Pourbeik, P., Vowles, D.J.: ‘Small-signal stability control and dynamic performance of power systems’ (University of Adelaide Press, Adelaide, Australia, 2015).
    13. 13)
      • 34. Singh, A., Singh, B.B., Reddy, M.P., et al: ‘Report on low frequency oscillation in Indian power system’. Task Force Report, Power System Operation Corporation Limited, New Delhi, March 2016.
    14. 14)
      • 25. Gao, Y., Ge, G., Sheng, Z., et al: ‘Analysis and solution to the mode mixing phenomenon in EMD’. Congress on Image and Signal Processing, 2008, CISP'08, IEEE, May 2008, pp. 223227.
    15. 15)
      • 11. Rogers, G.: ‘Power system oscillations’ (Kluwer, Norwell, MA, USA, 2000).
    16. 16)
      • 4. Cai, D., Regulski, P., Terzija, V.: ‘Smart application for inter-area oscillations monitoring based on Newton-type algorithm’, Int. Trans. Electr. Energ. Syst., 2016, 26, (11), pp. 23702384.
    17. 17)
      • 21. Northern regional load dispatch center. Available at http://nrldc.org, accessed 14 December 2015.
    18. 18)
      • 31. Dragomiretskiy, K., Zosso, D.: ‘Variational mode decomposition’, IEEE Trans. Signal Process., 2014, 62, (3), pp. 531544.
    19. 19)
      • 24. Rilling, G., Flandrin, P.: ‘One or Two frequencies? The empirical mode decomposition answers’, IEEE Trans. Signal Process., 2008, 56, (1), pp. 8595.
    20. 20)
      • 27. Jingsong, L., Quan, L., Hang, S.: ‘The study of the intermittency test algorithm to eliminate mode mixing’. 2011 4th Int. Congress on Image and Signal Processing (CISP), Shanghai, 2011, pp. 23842387.
    21. 21)
      • 33. Vanfretti, L., Bengtsson, S., Gjerde, J.O.: ‘Preprocessing synchronized phasor measurement data for spectral analysis of electromechanical oscillations in the Nordic Grid’, Eur. Trans. Electr. Power, 2013, 25, (2), pp. 348358.
    22. 22)
      • 26. Tang, B.P., Dong, S.J., Song, T.: ‘Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation’, Signal Process., 2012, 92, (1), pp. 248258.
    23. 23)
      • 32. Chow, J.H., Cheung, K.W.: ‘A toolbox for power system dynamics and control engineering education and research’, IEEE Trans. Power Syst., 1992, 7, (4), pp. 15591564.
    24. 24)
      • 12. Peng, J.-H., Nair, N.-K.: ‘Adaptive sampling scheme for monitoring oscillations using Prony analysis’, IET Gener. Transm. Distrib., 2009, 3, (12), pp. 10521060.
    25. 25)
      • 30. Colominas, M.A., Schlotthauer, G., Torres, M.E.: ‘Improved complete ensemble EMD: a suitable tool for biomedical signal processing’, Biomed. Signal Proc. Control, 2014, 14, pp. 1929.
    26. 26)
      • 28. Prince, A., Senroy, N., Balasubramanian, R.: ‘Targeted approach to apply masking signal-based empirical mode decomposition for mode identification from dynamic power system wide area measurement signal data’, IET Gener. Transm. Distrib., 2011, 5, (10), pp. 10251032.
    27. 27)
      • 9. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Inc., New York, 1994).
    28. 28)
      • 13. Chauduri, N.R., Chaudhuri, B.: ‘Damping and relative mode-shape estimation in near real-time through phasor approach’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 364373.
    29. 29)
      • 23. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis’, Proc. R. Soc. Lond., 1998, 454, (1971), pp. 903995.
    30. 30)
      • 10. Rai, S., Lalani, D., Nayak, S.K., et al: ‘Estimation of low-frequency modes in power system using robust modified Prony’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 14011409.
    31. 31)
      • 18. Lo, K.L., Qi, Z.Z., Xiao, D.: ‘Identification of coherent generators by spectrum analysis’, IEE Proc. Gener. Transm. Distrib., 1995, 142, (4), pp. 367371.
    32. 32)
      • 17. Kim, Y.S., Chen, L.: ‘Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition’, Appl. Math. Mech., 2013, 34, (7), pp. 801810.
    33. 33)
      • 2. Chamorro, H.R., Ordonez, C.A., Peng, J.C., et al: ‘Non-synchronous generation impact on power systems coherency’, IET. Gener. Transm. Distrib., 2016, 10, (10), pp. 24432453.
    34. 34)
      • 29. Rato, R.T, Ortigueira, M.D, Batista, A.G.: ‘On the HHT, its problems, and some solutions’, Mech. Syst. Signal Process., 2008, 22, (6), pp. 13741394.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0316
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0316
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading