access icon free Improved normalised normal constraint method to solve multi-objective optimal power flow problem

This study proposes an improved normalised normal constraint (NNC) method for solving optimal power flow (OPF), which is formulated as a multi-objective problem. While NNC is an efficient solution method to solve multi-objective problems, it may not cover the entire Pareto frontier in the objective space when three or more objectives are present in the problem, i.e. when the Pareto frontier becomes a hyper-surface. This research work aims to solve this limitation of NNC and propose a more effective solution method, named improved NNC (INNC), for multi-objective optimisation problems with three or more objective functions. The proposed INNC is applied for solving multi-objective OPF problem with three objectives of generation cost, transmission loss and voltage regulation. The effectiveness of the proposed INNC method for solving the multi-objective OPF problem is extensively illustrated on the IEEE 30-bus and IEEE 118-bus test systems in comparison with several recently published multi-objective solution approaches.

Inspec keywords: voltage control; Pareto optimisation; load flow

Other keywords: generation cost; IEEE 118-bus test systems; improved normalised normal constraint method; IEEE 30-bus test systems; transmission loss; hyper-surface Pareto frontier; multiobjective optimisation problems; NNC method; voltage regulation; multiobjective optimal power flow problem

Subjects: Control of electric power systems; Optimisation techniques; Power system management, operation and economics; Power system control; Voltage control; Optimisation techniques; a.c. transmission

References

    1. 1)
      • 24. Hosseini, S.A., Amjady, N., Shafie-khah, M., et al: ‘A new multi-objective solution approach to solve transmission congestion management problem of energy markets’, Appl. Energy, 2016, 165, pp. 462471.
    2. 2)
      • 17. Salehizadeh, M.R., Rahimi-Kian, A., Oloomi-Buygi, M.: ‘Security-based multi-objective congestion management for emission reduction in power system’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 124135.
    3. 3)
      • 19. Derafshian Maram, M., Amjady, N.: ‘Event-based remedial action scheme against super-component contingencies to avert frequency and voltage instabilities’, IET. Gener. Transm. Distrib., 2014, 8, (9), pp. 15911603.
    4. 4)
      • 30. El-Sobky, B., Abo-Elnaga, Y.: ‘Multi-objective optimal load flow problem with interior-point trust-region strategy’, Electr. Power Syst. Res., 2017, 148, pp. 127135.
    5. 5)
      • 20. Aghaei, J., Amjady, N., Shayanfar, H.A.: ‘Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method’, Appl. Soft Comput., 2011, 11, (4), pp. 38463858.
    6. 6)
      • 1. Dommel, H.W., Tinney, T.F.: ‘Optimal power flow solutions’, IEEE Trans. Power Appar. Syst., 1968, 87, (10), pp. 18661876.
    7. 7)
      • 8. Pulluri, H., Naresh, R., Sharma, V.: ‘An enhanced self-adaptive differential evolution based solution methodology for multi objective optimal power flow’, Appl. Soft Comput., 2017, 54, pp. 229245.
    8. 8)
      • 4. Capitanescu, F., Martinez Ramos, J.L., Panciatici, P., et al: ‘State-of-the-art, challenges, and future trends in security constrained optimal’, Electr. Power Syst. Res., 2011, 81, (8), pp. 17311741.
    9. 9)
      • 9. Ghasemi, M., Ghavidel, S., Ghanbarian, M.M., et al: ‘Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm’, Energy, 2014, 78, pp. 276289.
    10. 10)
      • 5. Shaheen, A.M., Farrag, S.M., El-Sehiemy, R.A.: ‘MOPF solution methodology’, IET. Gener. Transm. Distrib., 2017, 11, (2), pp. 570581.
    11. 11)
      • 25. Alsac, O., Stott, B.: ‘Optimal load flow with steady-state security’, IEEE Trans. Power Appar. Syst., 1974, PAS-93, (3), pp. 745751.
    12. 12)
      • 10. Zhang, J., Tang, Q., Li, P., et al: ‘A modified MOEA/D approach to the solution of multi-objective optimal power flow problem’, Appl. Soft Comput., 2016, 47, pp. 494514.
    13. 13)
      • 12. Brar, Y.S., Dhillon, J.S., Kothari, D.P.: ‘Multiobjective load dispatch by fuzzy logic based searching weightage pattern’, Electr. Power Syst. Res., 2002, 63, (2), pp. 149160.
    14. 14)
      • 14. Mavrotas, G.: ‘Effective implementation of the ɛ-constraint method in multi-objective mathematical programming problems’, Appl. Math. Comput., 2009, 213, (2), pp. 455465.
    15. 15)
      • 29. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    16. 16)
      • 22. Roman, C., Rosehart, W.: ‘Evenly distributed Pareto points in multi-objective optimal power flow’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 10111012.
    17. 17)
      • 16. Esmaili, M., Shayanfar, H.A., Amjady, N.: ‘Multi-objective congestion management incorporating voltage and transient stabilities’, Energy, 2009, 34, (9), pp. 14011412.
    18. 18)
      • 23. Barocio, E., Regalado, J., Cuevas, E., et al: ‘Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem’, IET. Gener. Transm. Distrib., 2017, 11, (4), pp. 10121022.
    19. 19)
      • 13. Amjady, N., Sharifzadeh, H.: ‘Security constrained optimal power flow considering detailed generator model by a new robust differential evolution algorithm’, Electr. Power Syst. Res., 2011, 81, (2), pp. 740749.
    20. 20)
      • 21. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: ‘The normalized normal constraint method for generating the Pareto frontier’, Struct. Multidiscip. Optim., 2003, 25, (2), pp. 8698.
    21. 21)
      • 3. Huneault, M., Galiana, F.D.: ‘A survey of the optimal power flow literature’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 762770.
    22. 22)
      • 11. Chen, Y.L.: ‘Weighted-norm approach for multiobjective VAR planning’, IEE Proc. –Gener. Transm. Distrib., 1998, 145, (4), pp. 369374.
    23. 23)
      • 18. Esmaili, M., Amjady, N., Shayanfar, H.A.: ‘Multi-objective congestion management by modified augmented ɛ-constraint method’, Appl. Energy, 2011, 38, (3), pp. 755766.
    24. 24)
      • 28. Coello Coello, C.A., Pulido, G.T., Lechuga, M.S.: ‘Handling multiple objectives with particle swarm optimization’, IEEE Trans. Evol. Comput., 2004, 8, (3), pp. 256279.
    25. 25)
      • 2. AlRashidi, M.R., El-Hawary, M.E.: ‘Applications of computational intelligence techniques for solving the revived optimal power flow problem’, Electric. Power Syst. Res., 2009, 79, (4), pp. 694702.
    26. 26)
      • 6. Niknam, T., Narimani, M.R., Aghaei, J., et al: ‘Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index’, IET. Gener. Transm. Distrib., 2012, 6, (6), pp. 515527.
    27. 27)
      • 7. Ghasemi, M., Ghavidel, S., Ghanbarian, M.M., et al: ‘Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: a comparative study’, Inf. Sci., 2014, 281, pp. 225247.
    28. 28)
      • 27. Utyuzhnikov, S.V., Fantini, P., Guenov, M.D.: ‘A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization’,J. Comput. Appl. Math., 2009, 223, (2), pp. 820841.
    29. 29)
      • 15. Dhillon, J.S., Parti, S.C.: ‘Multiobjective optimal thermal power dispatch’, Int. J. Electr. Power Energy Syst., 1994, 16, (6), pp. 383389.
    30. 30)
      • 26. Lee, K.Y., Park, Y.M., Ortiz, J.L.: ‘A united approach to optimal real and reactive power dispatch’, IEEE Trans. Power Appar. Syst., 1985, 104, (5), pp. 11471153.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0289
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading