Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Primary frequency control of DFIG-WTs using bang-bang phase angle controller

A bang-bang phase angle controller (BPAC) was proposed in this study for the primary frequency control of doubly-fed induction generator-based wind turbines (DFIG-WTs). Dynamics of the internal voltage of a synchronous generator (SG) and that of a DFIG-WT were investigated in frequency deviation events. A BPAC was designed to regulate the phase angle obtained with a phase-locked loop directly, which enables the rapid active power control of the DFIG-WT. The BPAC signal is fed into the active power regulation loop of the pitch angle controller, which is expected to help rotor speed recovery and prevent secondary frequency drop. The small-signal analysis was carried out for the closed-loop system, composed of the DFIG-WT and the external SG-based power system, to verify the stability of the overall system. Simulation studies were undertaken on a wind power penetrated multi-machine power system, through which the primary frequency control performance of the BPAC was verified.

References

    1. 1)
      • 6. Attya, A.B., Hartkopf, T.: ‘Wind turbine contribution in frequency drop mitigation-modified operation and estimation released supportive energy’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 862872.
    2. 2)
      • 3. Leon, A.E., Revel, G., Alonso, D.M., et al: ‘Wind power converters improving the power system stability’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 16221633.
    3. 3)
      • 1. Liu, Y., Wu, Q.H., Zhou, X.X.: ‘Co-ordinated multiloop switching control of DFIG for resilience enhancement of wind power penetrated power systems’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 10891099.
    4. 4)
      • 8. Arani, M.F., EI-Saadany, E.F.: ‘Implementing virtual inertia in DFIG-based wind power generation’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13731384.
    5. 5)
      • 19. Hackl, C., Trenn, S.: ‘The bang-bang funnel controller: an experimental verification’, J., Proc. Appl. Math. Mech., 2012, 12, (1), pp. 735736.
    6. 6)
      • 15. Kang, M., Kim, K., Muljadi, E., et al: ‘Frequency control support of a doubly-fed induction generator based on the torque limit’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 19.
    7. 7)
      • 7. Driesen, J., Visscher, K.: ‘Virtual synchronous generators’. Proc. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, July 2008, pp. 13.
    8. 8)
      • 13. Zhong, Q., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    9. 9)
      • 21. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’, vol. 7 (McGraw-Hill, New York, 1994).
    10. 10)
      • 5. Xia, J., Dyśko, A., O'Reilly, J.: ‘Future stability challenges for the UK network with high wind penetration levels’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 11601167.
    11. 11)
      • 17. Liberzon, D., Trenn, S.: ‘The bang-bang funnel controller for uncertain nonlinear systems with arbitrary relative degree’, IEEE Trans. Autom. Control, 2013, 58, (12), pp. 31263141.
    12. 12)
      • 4. Lalor, G., Mullane, A., O'Malley, M.: ‘Frequency control and wind turbine technologies’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 19051913.
    13. 13)
      • 2. Zhang, W., Fang, K.: ‘Controlling active power of wind farms to participate in load frequency control of power systems’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 21942203.
    14. 14)
      • 11. Solanki, A., Nasiri, A., Bhavaraju, V., et al: ‘A new framework for micro-grid management: virtual droop control’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 554566.
    15. 15)
      • 9. Choi, J.W., Heo, S.Y., Kim, M.K.: ‘Hybrid operation strategy of wind energy storage system for power grid frequency regulation’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 736749.
    16. 16)
      • 20. Daz-Gonzlez, F., Hau, M., Sumper, A., et al: ‘Participation of wind power plants in system frequency control: review of grid code requirements and control methods’, Renew. Sust. Energy Rev., 2014, 34, pp. 551564.
    17. 17)
      • 10. Ekanayake, J., Jenkins, N.: ‘Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 800802.
    18. 18)
      • 14. Wang, S., Hu, J., Yuan, X., et al: ‘On inertial dynamics of virtual-synchronous-controlled DFIG-based wing turbines’, IEEE Trans. Energy Convers., 2015, 30, (4), pp. 16911702.
    19. 19)
      • 16. He, W., Yuan, X., Hu, J.: ‘Inertia provision and estimation of PLL-based DFIG wind turbines’, IEEE Trans. Power Syst., 2016, 32, (1), pp. 110.
    20. 20)
      • 18. Liu, Y., Wu, Q.H., Zhou, X.X.: ‘Coordinated switching controllers for transient stability of multi-machine power systems’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 39373949.
    21. 21)
      • 12. Zhong, Q.C., Nguyen, P.L., Ma, Z., et al: ‘Self-synchronized synchronverters: inverters without a dedicated synchronization unit’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 617630.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0282
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0282
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address