Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Three-phase power-flow solutions using decomposed quasi-Newton method for unbalanced radial distribution networks

In this study, a three-phase power-flow method based on graph theory, injection current, and matrix decomposition techniques is proposed for unbalanced radial distribution networks. A decomposed quasi-Newton–Raphson-based method is used to solve the set of non-linear power equations described in polar coordinates. By using the injection current technique, the coupling-free component models can be integrated into the proposed method. To validate the performance and effectiveness of the proposed method, four three-phase IEEE test systems and a practical Taiwan Power Company (Taipower) distribution system are used for comparison. The test results show that the proposed method exhibits robust convergence characteristics and high performance even for ill-conditioned distribution networks.

References

    1. 1)
      • 14. Penido, D.R.R., De Araujo, L.R., Carneiro, S., et al: ‘Three-phase power flow based on four-conductor current injection method for unbalanced distribution networks’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 494503.
    2. 2)
      • 8. Vieira, J.C.M.Jr., Freitas, W., Morelato, A.: ‘Phase-decoupled method for three-phase power-flow analysis of unbalanced distribution systems’, IEE Proc. Gener. Transm. Distrib., 2004, 151, (5), pp. 568574.
    3. 3)
      • 15. Abdel-Akher, M., Nor, K.M., Rashid, A.H.A.: ‘Improved three-phase power-flow methods using sequence components’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 13891397.
    4. 4)
      • 10. Kersting, W.H.: ‘Distribution system modeling and analysis’ (CRC Press, 2012).
    5. 5)
      • 35. Hsieh, T.-Y., Chen, T.-H., Yang, N.-C.: ‘Matrix decompositions-based approach to Z-bus matrix building process for radial distribution systems’, Int. J. Electr. Power Energy Syst., 2017, 89, pp. 6268.
    6. 6)
      • 34. Yang, N.-C., Le, M.-D.: ‘Loop frame of reference based harmonic power flow for unbalanced radial distribution systems’, Int. J. Electr. Power Energy Syst., 2016, 77, pp. 128135.
    7. 7)
      • 36. Stagg, G.W., El-Abiad, A.H.: ‘Computer methods in power system analysis’ (McGraw-Hill Book Company, 1980, 2nd edn.).
    8. 8)
      • 25. Dzafic, I., Pal, B.C., Gilles, M., et al: ‘Generalized Fortescue equivalent admittance matrix approach to power flow solution’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 193202.
    9. 9)
      • 11. Cheng, C.S., Shirmohammadi, D.: ‘A three-phase power flow method for real-time distribution system analysis’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 671679.
    10. 10)
      • 17. Zhang, Y.-S., Chiang, H.-D.: ‘Fast Newton-FGMRES solver for large-scale power flow study’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 769776.
    11. 11)
      • 12. Chang, G., Chu, S., Wang, H.: ‘An improved backward/forward sweep load flow algorithm for radial distribution systems’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 882884.
    12. 12)
      • 3. Yang, N.C., Chen, T.H.: ‘Dual genetic algorithm-based approach to fast screening process for distributed-generation interconnections’, IEEE Trans Power Deliv., 2011, 26, (2), pp. 850858.
    13. 13)
      • 30. Yang, N.-C.: ‘Three-phase power flow calculations by direct Z LOOP method for microgrids with electric vehicle charging demands’, IET Gener. Transm. Distrib., 2013, 7, (9), pp. 10021010.
    14. 14)
      • 23. Kocar, I., Mahseredjian, J., Karaagac, U., et al: ‘Multiphase load-flow solution for large-scale distribution systems using MANA’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 908915.
    15. 15)
      • 32. Yang, N.-C.: ‘Three-phase power flow calculations using direct Z BUS method for large-scale unbalanced distribution networks’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 10481055.
    16. 16)
      • 19. Kamh, M.Z., Iravani, R.: ‘Steady-state model and power-flow analysis of single-phase electronically coupled distributed energy resources’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 131139.
    17. 17)
      • 9. Tinney, W.F., Hart, C.E.: ‘Power flow solution by Newton's method’, IEEE Trans. Power Appar. Syst., 1967, PAS-86, (11), pp. 14491460.
    18. 18)
      • 5. Yang, N.-C., Tseng, W.-C.: ‘Impact assessment of a hybrid energy-generation system on a residential distribution system in Taiwan’, Energy Build., 2015, 91, pp. 170179.
    19. 19)
      • 16. Marinho, J.T., Taranto, G.: ‘A hybrid three-phase single-phase power flow formulation’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 10631070.
    20. 20)
      • 24. Ramos, E.R., Exposito, A.G., Cordero, G.A.: ‘Quasi-coupled three-phase radial load flow’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 776781.
    21. 21)
      • 22. Li, H.W., Zhang, A.A., Shen, X., et al: ‘A load flow method for weakly meshed distribution networks using powers as flow variables’, Int. J. Electr. Power Energy Syst., 2014, 58, pp. 291299.
    22. 22)
      • 1. Chen, T.H., Yang, N.C.: ‘Simplified annual energy loss evaluation method for branch circuits of a home or building’, Energy Build., 2010, 42, (12), pp. 22812288.
    23. 23)
      • 27. Sunderland, K., Coppo, M., Conlon, M., et al: ‘A correction current injection method for power flow analysis of unbalanced multiple-grounded 4-wire distribution networks’, Electr. Power Syst. Res., 2016, 132, pp. 3038.
    24. 24)
      • 38. Shirmohammadi, D., Hong, H.W., Semlyen, A., et al: ‘A compensation-based power flow method for weakly meshed distribution and transmission networks’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753762.
    25. 25)
      • 6. Chen, T.-H., Chiang, L.-S., Yang, N.-C.: ‘Examination of major factors affecting voltage variation on distribution feeders’, Energy Build., 2012, 55, pp. 494499.
    26. 26)
      • 37. Kersting, W.H.: ‘Radial distribution test feeders’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 975985.
    27. 27)
      • 20. de Moura, A.P., de Moura, A.A.F.: ‘Newton–Raphson power flow with constant matrices: a comparison with decoupled power flow methods’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 108114.
    28. 28)
      • 13. Garcia, P.A.N., Pereira, J.L.R., Carneiro, S., et al: ‘Three-phase power flow calculations using the current injection method’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 508514.
    29. 29)
      • 2. Yang, N.-C., Chen, T.-H.: ‘Assessment of loss factor approach to energy loss evaluation for branch circuits or feeders of a dwelling unit or building’, Energy Build., 2012, 48, pp. 9196.
    30. 30)
      • 28. Chen, T.H., Yang, N.C.: ‘Loop frame of reference based three-phase power flow for unbalanced radial distribution systems’, Electr. Power Syst. Res., 2010, 80, (7), pp. 799806.
    31. 31)
      • 33. Yang, N.-C., Le, M.-D.: ‘Three-phase harmonic power flow by direct Z BUS method for unbalanced radial distribution systems with passive power filters’, IET Gener. Transm. Distrib., 2016, 10, (13), pp. 32113219.
    32. 32)
      • 31. Yang, N.-C., Tseng, W.-C.: ‘Adaptive three-phase power-flow solutions for smart grids with plug-in hybrid electric vehicles’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 11661175.
    33. 33)
      • 4. Yang, N.C., Chen, T.H.: ‘Evaluation of maximum allowable capacity of distributed generations connected to a distribution grid by dual genetic algorithm’, Energy Build., 2011, 43, (11), pp. 30443052.
    34. 34)
      • 21. Alam, M.J., Muttaqi, K.M., Sutanto, D.: ‘A three-phase power flow approach for integrated 3-wire MV and 4-wire multigrounded LV networks with rooftop solar PV’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 17281737.
    35. 35)
      • 26. Arboleya, P., González-Morán, C., Coto, M.: ‘Unbalanced power flow in distribution systems with embedded transformers using the complex theory in stationary reference frame’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 10121022.
    36. 36)
      • 29. Chen, T.-H., Yang, N.-C.: ‘Three-phase power-flow by direct Z BR method for unbalanced radial distribution systems’, IET Gener. Transm. Distrib., 2009, 3, (10), pp. 903910.
    37. 37)
      • 18. Kamh, M.Z., Iravani, R.: ‘Unbalanced model and power-flow analysis of microgrids and active distribution systems’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 28512858.
    38. 38)
      • 7. Chen, T.H., Chen, M.S., Hwang, K.J., et al: ‘Distribution system power flow analysis – a rigid approach’, IEEE Trans. Power Deliv., 1991, 6, (3), pp. 11461152.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0281
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0281
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address