access icon free Active power control of a photovoltaic system without energy storage using neural network-based estimator and modified P&O algorithm

This study proposes a variable step size modified P&O algorithm for active power control (APC) that ensures that a predetermined amount of power, which is less than the maximum power, is extracted from the photovoltaic system without any energy storage. Under varying environmental conditions, the maximum available power varies and care should be taken to ensure that the desired operating point is below and on the right side of the current maximum power point (MPP). This requires real-time estimation of MPP. A neural network (NN)-based MPP estimator is proposed. With NN-based MPP estimator and modified P&O algorithm, a novel APC scheme is shown to perform well under varying environmental and demand conditions. This method of APC has been validated through simulation and experimental results.

Inspec keywords: power control; photovoltaic power systems; power system control; neural nets; maximum power point trackers

Other keywords: neural network-based MPP estimator; active power control; varying environmental conditions; MPP real-time estimation; modified P&O algorithm; photovoltaic system; current maximum power point

Subjects: Neural computing techniques; Power electronics, supply and supervisory circuits; Power system control; DC-DC power convertors; Power and energy control; Control of electric power systems; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 19. Watson, L.D., Kimball, J.W.: ‘Frequency regulation of a microgrid using solar power’. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conf. Exposition (APEC), 2011, pp. 321326.
    2. 2)
      • 7. Brekken, T.K.A., Yokochi, A., von Jouanne, A., et al: ‘Optimal energy storage sizing and control for wind power applications’, IEEE Trans. Sust. Energy, 2010.
    3. 3)
      • 3. Eto, J.H., Undrill, J., Mackin, P., et al: ‘Use of frequency response metrics to assess the planning and operating requirements for reliable integration of variable renewable generation’ (Lawrence Berkeley National Laboratory, 2010).
    4. 4)
      • 33. Bhuvaneswari, G., Annamalai, R.: ‘Development of a solar cell model in MATLAB for PV based generation system’. 2011 Annual IEEE India Conf. (INDICON), 2011, pp. 15.
    5. 5)
      • 2. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2010, 4, (5), p. 438.
    6. 6)
      • 30. Hiyama, T., Kitabayashi, K.: ‘Neural network based estimation of maximum power generation from PV module using environmental information’, IEEE Trans. Energy Convers., 1997, 12, (3), pp. 241247.
    7. 7)
      • 22. Chen, Y., Smedley, K.M.: ‘A cost-effective single-stage inverter with maximum power point tracking’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 12891294.
    8. 8)
      • 21. Wang, Z., Yang, T., Liu, Y., et al: ‘Power control strategy for photovoltaic system based on the Newton quadratic interpolation’, IET Renew. Power Gener., 2014, 8, (6), pp. 611620.
    9. 9)
      • 20. Pappu, V.A.K., Chowdhury, B., Bhatt, R.: ‘Implementing frequency regulation capability in a solar photovoltaic power plant’. North American Power Symp. (NAPS), 2010, 2010, pp. 16.
    10. 10)
      • 23. Wang, J.-C., Su, Y.-L., Shieh, J.-C., et al: ‘High-accuracy maximum power point estimation for photovoltaic arrays’, Sol. Energy Mater. Sol. Cells, 2011, 95, (3), pp. 843851.
    11. 11)
      • 29. Sahu, H.S., Nayak, S.K.: ‘Numerical approach to estimate the maximum power point of a photovoltaic array’, IET. Gener. Transm. Distrib., 2016, 10, (11), pp. 26702680.
    12. 12)
      • 32. Ben Salah, C., Ouali, M.: ‘Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems’, Electr. Power Syst. Res., 2011, 81, (1), pp. 4350.
    13. 13)
      • 16. Kakimoto, N., Takayama, S., Satoh, H., et al: ‘Power modulation of photovoltaic generator for frequency control of power system’, IEEE Trans. Energy Convers., 2009, 24, (4), pp. 943949.
    14. 14)
      • 6. Ro, K., Rahman, S.: ‘Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant’, IEEE Trans. Energy Convers., 1998, 13, (3), pp. 276281.
    15. 15)
      • 18. Datta, M., Senjyu, T., Yona, A., et al: ‘A frequency-control approach by photovoltaic generator in a PV-diesel hybrid power system’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 559571.
    16. 16)
      • 25. Ma, J., Man, K.L., Ting, T.O., et al: ‘DEM: direct estimation method for photovoltaic maximum power point tracking’, Proc. Comp. Sci., 2013, 17, pp. 537544.
    17. 17)
      • 28. Hoke, A., Muljadi, E., Maksimovic, D.: ‘Real-time photovoltaic plant maximum power point estimation for use in grid frequency stabilization’. 2015 IEEE 16th Workshop Control and Modeling for Power Electronics (COMPEL), 2015, pp. 17.
    18. 18)
      • 11. Liu, C., Wang, X., Wu, X., et al: ‘Economic scheduling model of microgrid considering the lifetime of batteries’, IET. Gener. Transm. Distrib., 2017, 11, (3), pp. 759767.
    19. 19)
      • 13. Ben Salah, C., Chaabene, M., Ben Ammar, M.: ‘Multi-criteria fuzzy algorithm for energy management of a domestic photovoltaic panel’, Renew. Energy, 2008, 33, (5), pp. 9931001.
    20. 20)
      • 15. Aho, J., Buckspan, A., Laks, J., et al: ‘A tutorial of wind turbine control for supporting grid frequency through active power control’. American Control Conf. (ACC), 2012, 2012, pp. 31203131.
    21. 21)
      • 5. Fakham, H., Lu, D., Francois, B.: ‘Power control design of a battery charger in a hybrid active PV generator for load-following applications’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 8594.
    22. 22)
      • 26. Garrigós, A., Blanes, J.M., Carrasco, J.A., et al: ‘Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation’, Renew. Energy, 2007, 32, (6), pp. 10591076.
    23. 23)
      • 31. Elobaid, L.M., Abdelsalam, A.K., Zakzouk, E.E.: ‘Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey’, IET Renew. Power Gener., 2015, 9, (8), pp. 10431063.
    24. 24)
      • 12. Rajabi-Ghahnavieh, A., Hamedi, A.-S.: ‘Explicit degradation modelling in optimal lead–acid battery use for photovoltaic systems’, IET. Gener. Transm. Distrib., 2016, 10, (4), pp. 10981106.
    25. 25)
      • 34. Salmi, T., Bouzguenda, M., Gastli, A., et al: ‘Matlab/simulink based modeling of photovoltaic cell’, Int. J. Renew. Energy Res., 2012, 2, (2), pp. 213218.
    26. 26)
      • 1. Asano, H., Yajima, K., Kaya, Y.: ‘Influence of photovoltaic power generation on required capacity for load frequency control’, IEEE Trans. Energy Convers., 1996, 11, (1), pp. 188193.
    27. 27)
      • 4. Ru, Y., Kleissl, J., Martinez, S.: ‘Storage size determination for grid-connected photovoltaic systems’, IEEE Trans. Sust. Energy, 2013, 4, (1), pp. 6881.
    28. 28)
      • 27. Kumar, G., Panchal, A.K.: ‘Geometric prediction of maximum power point for photovoltaics’, Appl. Energy, 2014, pp. 237245.
    29. 29)
      • 24. Jiang, J.-A., Liang, Y.-T., Wang, J.-C., et al: ‘A novel analytical model for determining the maximum power point of thin film photovoltaic module: determining the maximum power point of PV modules’, Prog. Photovolt., Res. Appl., 2014, 22, (3), pp. 318331.
    30. 30)
      • 8. Ali, M.H., Wu, B., Dougal, R.A.: ‘An overview of SMES applications in power and energy systems’, IEEE Trans. Sust. Energy, 2010, 1, (1), pp. 3847.
    31. 31)
      • 14. Hoke, A., Maksimovic, D.: ‘Active power control of photovoltaic power systems’. 2013 1st IEEE Conf. Technologies for Sustainability (SusTech), 2013, pp. 7077.
    32. 32)
      • 17. Seo, H.-R., Kim, G.-H., Kim, S.-Y., et al: ‘Power quality control strategy for grid-connected renewable energy sources using PV array and supercapacitor’. 2010 Int. Conf. Electrical Machines and Systems (ICEMS), 2010, pp. 437441.
    33. 33)
      • 10. Khiareddine, A., Ben Salah, C., Mimouni, M.F.: ‘Power management of a photovoltaic/battery pumping system in agricultural experiment station’, Sol. Energy, 2015, 112, pp. 319338.
    34. 34)
      • 9. Khajesalehi, J., Afjei, E., Hamzeh, M., et al: ‘High-performance hybrid photovoltaic-battery system based on quasi-Z-source inverter: application in microgrids’, IET. Gener. Transm. Distrib., 2015, 9, (10), pp. 895902.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0156
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading