access icon free A New grid synchronisation scheme for a three-phase PV system using self-tuning filtering approach

This study presents a new control scheme for synchronisation of a photovoltaic (PV) system to a three-phase grid employing self-tuning concept. The proposed synchronisation approach is developed to mitigate load current harmonics, to extract maximum PV power and inject it into the grid. Maximum PV power is extracted using an incremental conductance-based algorithm for estimating the reference DC-link voltage of a voltage source inverter and a proportional–integral controller for regulating the actual DC-link voltage. In the proposed self-tuning filter (STF) algorithm, only a single module of STF is required to extract the fundamental components of load current and grid voltage thus reducing system size, complexity and overall response time. Simulation of the proposed system is carried out using MATLAB/Simulink followed by experimentation on a prototype of grid connected PV system developed in the authors' laboratory. The efficacy of the proposed STF control scheme is compared with a recently reported algorithm called improved linear sinusoidal tracer (ILST) and dual second-order generalised integrator (DSOGI). From the comparison with DSOGI and ILST, it is observed that the STF-based control scheme provides faster response and reduces total harmonic distortion of the grid current despite the distorted and unbalanced grid condition.

Inspec keywords: self-adjusting systems; power grids; adaptive control; PI control; power generation control; filtering theory; synchronisation; maximum power point trackers; photovoltaic power systems

Other keywords: three-phase PV system; total harmonic distortion; grid voltage; self-tuning filtering approach; maximum power point tracking algorithm; proportional-integral controller; distorted grid condition; STF control scheme; THD; reference DC-link voltage; PV array; load current harmonics mitigation; PI controller; MPPT; unbalanced grid condition; incremental conductance; ILST; dual second-order generalised integrator; response time; grid current; DSOGI; maximum power extraction; improved linear sinusoidal tracer; MATLAB-Simulink; grid synchronisation scheme

Subjects: Solar power stations and photovoltaic power systems; Control of electric power systems; Filtering methods in signal processing; Self-adjusting control systems; DC-DC power convertors

References

    1. 1)
      • 2. Wu, T.F., Chang, C.H., Lin, L.C., et al: ‘Power loss comparison of single- and two-stage grid-connected photovoltaic systems’, IEEE Tran. Energy Convers., 2011, 26, (2), pp. 707715.
    2. 2)
      • 5. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    3. 3)
      • 17. Rodríguez, P., Luna, A., Muñoz-Aguilar, R.S., et al: ‘A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 99112.
    4. 4)
      • 11. Hu, Y., Du, Y., Xiao, W., et al: ‘DC-link voltage control strategy for reducing capacitance and total harmonic distortion in single-phase grid-connected photovoltaic inverters’, IET Power Electron., 2015, 8, (8), pp. 13861393.
    5. 5)
      • 18. Biricik, S., Redif, S., Özerdem, O.C., et al: ‘Real-time control of shunt active power filter under distorted grid voltage and unbalanced load condition using self-tuning filter’, IET Power Electron., 2014, 7, (7), pp. 18951905.
    6. 6)
      • 12. Tuyen, N. D., Fujita, G.: ‘PV-active power filter combination supplies power to nonlinear load and compensates utility current’, IEEE Power Energy Technol. Syst. J., 2015, 2, (1), pp. 3242.
    7. 7)
      • 9. Kolesnik, S., Kuperman, A.: ‘On the equivalence of major variable-step-size MPPT algorithms’, IEEE J. Photovolt., 2016, 6, (2), pp. 590594.
    8. 8)
      • 22. Kumar, S., Verma, A.K., Hussain, I., et al: ‘Better control for a solar energy system: using improved enhanced phase-locked loop-based control under variable solar intensity’, IEEE Ind. Appl. Mag., 2017, 23, (2), pp. 2436.
    9. 9)
      • 16. Reza, M. S., Ciobotaru, M., Agelidis, V.G.: ‘Accurate estimation of single-phase grid voltage parameters under distorted conditions’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 11381146.
    10. 10)
      • 3. Yang, Y., Zhou, K., Blaabjerg, F.: ‘Current harmonics from single-phase grid-connected inverters – examination and suppression’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (1), pp. 221233.
    11. 11)
      • 7. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439449.
    12. 12)
      • 1. Kouro, S., Leon, J.I., Vinnikov, D., et al: ‘Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 4761.
    13. 13)
      • 14. Lin, F.J., Lu, K.C., Ke, T.H., et al: ‘Reactive power control of three-phase grid-connected pv system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 55165528.
    14. 14)
      • 21. Abdusalama, M., Poureb, P., Karimia, S., et al: ‘New digital reference current generation for shunt active power filter under distorted voltage conditions’, Electr. Power Syst. Res., 2009, 79, (5), pp. 759763.
    15. 15)
      • 13. Gonzalez-Espin, F., Garcera, G., Patrao, I., et al: ‘An adaptive control system for three-phase photovoltaic inverters working in a polluted and variable frequency electric grid’, IEEE Tran. Power Electron., 2012, 27, (10), pp. 42484261.
    16. 16)
      • 19. Neves, F.A. S., Carrasco, M., Mancilla-David, F., et al: ‘Unbalanced grid fault ride-through control for single-stage photovoltaic inverters’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 33383347.
    17. 17)
      • 15. Singh, B., Jain, C., Goel, S.: ‘ILST control algorithm of single-stage dual purpose grid connected solar PV system’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 53475357.
    18. 18)
      • 4. Singh, B., Al-Haddad, K., Chandra, A.: ‘A review of active filters for power quality improvement’, IEEE Trans. Ind. Electron., 1999, 46, (5), pp. 960971.
    19. 19)
      • 10. Faraji, R., Rouholamini, A., Naji, H.R., et al: ‘FPGA-based real time incremental conductance maximum power point tracking controller for photovoltaic systems’, IET Power Electron., 2014, 7, (5), pp. 12941304.
    20. 20)
      • 8. Pradhan, R., Subudhi, B.: ‘Double integral sliding mode MPPT control of a photovoltaic system’, IEEE Trans. Control Syst. Technol., 2016, 24, (1), pp. 285292.
    21. 21)
      • 6. Subudhi, B., Pradhan, R.: ‘A comparative study on maximum power point tracking techniques for photovoltaic power system’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 8998.
    22. 22)
      • 20. El-Naggar, A., Erlich, I.: ‘Control approach of three-phase grid connected PV inverters for voltage unbalance mitigation in low-voltage distribution grids’, IET Renew. Power Gener., 2016, 10, (10), pp. 15771586.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0142
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0142
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading