Inter-area oscillation damping with non-synchronised wide-area power system stabiliser

Inter-area oscillation damping with non-synchronised wide-area power system stabiliser

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One of the major issues in an interconnected power system is the low damping of inter-area oscillations which significantly reduces the power transfer capability. A speed deviation-based wide-area power system stabiliser (WAPSS) is known to be effective in damping inter-area modes which use feedback from remote locations. However, the involvement of wide-area signals gives rise to the problem of time delay, which may degrade the system performance. The delay in synchronised and non-synchronised feedback to WAPSS can have alternate performances. The effect of delays in such WAPSS with two types of feedback is studied and controllers are synthesised using the control with regional pole placement to ensure adequate dynamic performance. To show the effectiveness of the proposed approach, two power system models have been used for the simulations. It is shown that the controllers designed based on the non-synchronised signals are more robust to time-delay variations than the controllers using the synchronised signal.


    1. 1)
      • 1. Kundur, P.: ‘Power system stability and control’ (McGraw Hill Education (India) Private Limited, New Delhi, India, 2006).
    2. 2)
      • 2. Chow, J., Sanchez-Gasca, J.J., Ren, H., et al: ‘Power system damping controller design-using multiple input signals’, IEEE Control Syst., 2000, 20, (4), pp. 8290.
    3. 3)
      • 3. Kamwa, I., Heniche, A., Trudel, G., et al: ‘Assessing the technical value of facts-based wide-area damping control loops’. IEEE Power Engineering Society General Meeting, 2005, San Francisco, CA, USA, June 2005, vol. 2, pp. 17341743.
    4. 4)
      • 4. Zhang, J., Chung, C., Zhang, S., et al: ‘Practical wide area damping controller design based on ambient signal analysis’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 16871696.
    5. 5)
      • 5. Aboul-Ela, M.E., Sallam, A.A., Mccalley, J.D., et al: ‘Damping controller design for power system oscillations using global signals’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 767773.
    6. 6)
      • 6. Padhy, B., Srivastava, S., Verma, N.: ‘Robust wide-area ts fuzzy output feedback controller for enhancement of stability in multimachine power system’, IEEE Syst. J., 2012, 6, (3), pp. 426435.
    7. 7)
      • 7. Ni, H., Heydt, G., Mili, L.: ‘Power system stability agents using robust wide area control’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 11231131.
    8. 8)
      • 8. Kamwa, I., Grondin, R., Hebert, Y.: ‘Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach’, IEEE Trans. Power Syst., 2001, 16, (1), pp. 136153.
    9. 9)
      • 9. Chaudhuri, B., Majumder, R., Pal, B.: ‘Application of multiple-model adaptive control strategy for robust damping of interarea oscillations in power system’, IEEE Trans. Control Syst. Tech., 2004, 12, (5), pp. 727736.
    10. 10)
      • 10. Zolotas, A., Chaudhuri, B., Jaimoukha, I., et al: ‘A study on lqg/ltr control for damping inter-area oscillations in power systems’, IEEE Trans. Control Syst. Tech., 2007, 15, (1), pp. 151160.
    11. 11)
      • 11. Xie, X., Xiao, J., Lu, C., et al: ‘Wide-area stability control for damping interarea oscillations of interconnected power systems’, IEE Proc. Gener. Transm. Distrib., 2006, 153, (5), pp. 507514.
    12. 12)
      • 12. Zhang, Y., Bose, A.: ‘Design of wide-area damping controllers for interarea oscillations’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 11361143.
    13. 13)
      • 13. Chakrabortty, A.: ‘Wide-area damping control of large power systems using a model reference approach’. 50th IEEE Conf. on Decision and Control and European Control Conf., Orlando, FL, USA, December 2011, pp. 21892194.
    14. 14)
      • 14. Majumder, R., Chaudhuri, B., El-Zobaidi, H., et al: ‘LMI approach to normalised H loop-shaping design of power system damping controllers’, IEE Proc. Gener. Transm. Distrib., 2005, 152, (6), pp. 952960.
    15. 15)
      • 15. Bhadu, M., Senroy, N., Kar, I.N., et al: ‘Robust linear quadratic Gaussian-based discrete mode wide area power system damping controller’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 14701478.
    16. 16)
      • 16. Chen, H., Guo, Z., Bai, H.: ‘Wide-area robust H2/H control with pole placement for damping inter-area oscillations’. IEEE Power Engineering Society General Meeting, 2006, Montreal, Canada, June 2006, p. 7.
    17. 17)
      • 17. Wu, M., He, Y., She, J.-H., et al: ‘Delay-dependent criteria for robust stability of time-varying delay systems’, Automatica, 2004, 40, (8), pp. 14351439.
    18. 18)
      • 18. Ghosh, S., Folly, K., Patel, A.: ‘Synchronized versus non-synchronized feedback for speed-based wide-area PSS: effect of time-delay’, IEEE Trans. Smart Grid, 2016, PP, (99), p. 1.
    19. 19)
      • 19. Yao, W., Jiang, L., Wen, J., et al: ‘Wide-area damping controller for power system interarea oscillations: a networked predictive control approach’, IEEE Trans. Control Syst. Tech., 2015, 23, (1), pp. 2736.
    20. 20)
      • 20. Chaudhuri, B., Majumder, R., Pal, B.: ‘Wide-area measurement-based stabilizing control of power system considering signal transmission delay’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 19711979.
    21. 21)
      • 21. Zhang, P., Yang, D., Chan, K., et al: ‘Adaptive wide-area damping control scheme with stochastic subspace identification and signal time delay compensation’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 844852.
    22. 22)
      • 22. Zhang, X., Lu, C., Xie, X., et al: ‘Stability analysis and controller design of a wide-area time-delay system based on the expectation model method’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 520529.
    23. 23)
      • 23. Yao, W., Jiang, L., Wen, J., et al: ‘Wide-area damping controller of facts devices for inter-area oscillations considering communication time delays’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 318329.
    24. 24)
      • 24. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control: analysis and design’ (Wiley India Pvt Ltd, New Delhi, India, 2015).
    25. 25)
      • 25. Chilali, M., Gahinet, P.: ‘H design with pole placement constraints: an LMI approach’, IEEE Trans. Autom. Control, 1996, 41, (3), pp. 358367.
    26. 26)
      • 26. Scherer, C., Gahinet, P., Chilali, M.: ‘Multiobjective output-feedback control via LMI optimization’, IEEE Trans. Autom. Control, 1997, 42, (7), pp. 896911.
    27. 27)
      • 27. P.S.D.P. Committee: ‘Benchmark systems for small-signal stability analysis and control’. IEEE, Tech. Rep., 2015. Available at:
    28. 28)
      • 28. Hamdan, A., Elabdalla, A.: ‘Geometric measures of modal controllability and observability of power system models’, Electr. Power Syst. Res., 1988, 15, (2), pp. 147155.
    29. 29)
      • 29. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability ieee/cigre joint task force on stability terms and definitions’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 13871401.
    30. 30)
      • 30. Pai, M.: ‘Energy function analysis for power system stability’ (Springer Science & Business Media, New York, NY, USA, 1989).
    31. 31)
      • 31. Jabr, R., Pal, B., Martins, N., et al: ‘Robust and coordinated tuning of power system stabiliser gains using sequential linear programming’, IET Gener. Transm. Distrib., 2010, 4, (8), pp. 893904.

Related content

This is a required field
Please enter a valid email address