access icon free Single-port and multi-port frequency-dependent network equivalents with numerically stable branches

This study proposes new methods for finding frequency-dependent network equivalents of power systems. Since stability of the time-domain solution is a major concern, additional constraints are added to ensure the stability in both single-port and multi-port network equivalents. For single-port problem, an equivalent circuit consisting of only passive elements is estimated to ensure passivity and, consequently, stability of the time-domain solution. For multi-port case, additional stable branches are added to fit the frequency response data with high accuracy while maintaining stability of the equivalent. Several case studies are considered to evaluate the performance of the proposed approaches. The simulation results prove the efficacy of the proposed methods for finding stable equivalent circuits with high accuracy.

Inspec keywords: multiport networks; time-domain analysis; power system stability; frequency response

Other keywords: multiport frequency dependent network equivalents; passive elements; numerically stable branches; frequency response data; time-domain solution stability; single-port dependent network equivalents; power systems

Subjects: Mathematical analysis; Power system control

References

    1. 1)
      • 20. Meng, L., Gao, P., Moghimi Haji, M., et al: ‘Magnetic sensor array-based AC current measurement for multiconductor cables using evolutionary computation method’, IEEE Trans. Instrum. Meas., 2015, 64, (10), pp. 27472758.
    2. 2)
      • 8. Coelho, C., Phillips, J., Silveira, L.: ‘A convex programming approach for generating guaranteed passive approximations to tabulated frequency-data’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2004, 23, (2), pp. 293301.
    3. 3)
      • 4. Liu, X., Ti, C., Liang, G.: ‘Wide-band modelling and transient analysis of the multi-conductor transmission lines system considering the frequency-dependent parameters based on the fractional calculus theory’, IET Gener. Transm. Distrib., 2016, 10, (13), pp. 33743384.
    4. 4)
      • 22. Naghizadeh, R., Vahidi, B., Hosseinian, S.: ‘Modelling of inrush current in transformers using inverse Jiles–Atherton hysteresis model with a neuro-shuffled frog-leaping algorithm approach’, IET Electr. Power Appl., 2012, 6, (9), pp. 727734.
    5. 5)
      • 17. Abbasi, A., Seifi, A.: ‘Unified electrical and thermal energy expansion planning with considering network reconfiguration’, IET Gener. Transm. Distrib., 2015, 9, (6), pp. 592601.
    6. 6)
      • 2. Hu, Y., Wu, W., Zhang, B.: ‘Compacting and partitioning-based simulation solution for frequency-dependent network equivalents in real-time digital simulator’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 25262533.
    7. 7)
      • 12. Hu, Y., Wu, W., Zhang, B.: ‘A semidefinite programming model for passivity enforcement of frequency-dependent network equivalents’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 397399.
    8. 8)
      • 10. Grivet-Talocia, S.: ‘An adaptive sampling technique for passivity characterization and enforcement of large interconnect macromodels’, IEEE Trans. Adv. Packag., 2007, 30, (2), pp. 226237.
    9. 9)
      • 1. Annakkage, U.D., Nair, N.K.C., Liang, Y., et al: ‘Dynamic system equivalents: a survey of available techniques’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 411420.
    10. 10)
      • 16. Asrari, A., Lotfifard, S., Payam, M.: ‘Pareto dominance-based multiobjective optimization method for distribution network reconfiguration’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 14011410.
    11. 11)
      • 11. Grivet-Talocia, S., Ubolli, A.: ‘A comparative study of passivity enforcement schemes for linear lumped macromodels’, IEEE Trans. Adv. Packag., 2008, 31, pp. 111.
    12. 12)
      • 21. Eusuff, M., Lansey, K., Pasha, F.: ‘Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization’, Eng. Optim., 2006, 38, (2), pp. 129154.
    13. 13)
      • 5. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10521061.
    14. 14)
      • 15. The vector fitting website, Vectfit3.m, software package’. Available at http://www.energy.sintef.no/produkt/VECTFIT/-index.asp, accessed 1 October 2016.
    15. 15)
      • 13. Morched, A., Ottevangers, J., Marti, L.: ‘Multi-port frequency dependent network equivalents for the EMTP’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 14021412.
    16. 16)
      • 3. Golpira, H., Seifi, H., Haghifam, M.: ‘Dynamic equivalencing of an active distribution network for large-scale power system frequency stability studies’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22452254.
    17. 17)
      • 9. Gustavsen, B.: ‘Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 22782285.
    18. 18)
      • 14. Pordanjani, I., Chung, C., Mazin, H., et al: ‘A method to construct equivalent circuit model from frequency responses with guaranteed passivity’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 400409.
    19. 19)
      • 18. Zeinoddini-Meymand, H., Vahidi, B., Naghizadeh, R.A., et al: ‘Optimal surge arrester parameter estimation using a PSO-based multiobjective approach’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 17581769.
    20. 20)
      • 6. Gustavsen, B.: ‘Computer code for rational approximation of frequency dependent admittance matrices’, IEEE Trans. Power Deliv., 2002, 17, (4), pp. 10931098.
    21. 21)
      • 19. Jazebi, S., Moghimi Haji, M., Naghizadeh, R.A.: ‘Distribution network reconfiguration in the presence of harmonic loads: optimization techniques and analysis’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19291937.
    22. 22)
      • 23. Wu, F., Monticelli, A.: ‘Critical review of external network modelling for online security analysis’, Int. J. Electr. Power Energy Syst., 1983, 5, (4), pp. 222235.
    23. 23)
      • 7. Gustavsen, B., Semlyen, A.: ‘Enforcing passivity for admittance matrices approximated by rational functions’, IEEE Trans. Power Syst., 2001, 16, (1), pp. 97104.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2144
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading