access icon free Enhancing fault ride-through capability of DFIG with modified SMES-FCL and RSC control

For grid-connected doubly fed induction generators (DFIGs), fault ride-through (FRT) capability and transient stability are vital problems that urgently need to be addressed. To overcome these problems, a novel superconducting magnetic energy storage-fault current limiter (SMES-FCL)-based protection scheme by modified control of superconducting coil (SC) and rotor-side converter (RSC) is investigated here. A rotor-side mathematical model is used to estimate and optimise the SC inductance parameter. Two modified control strategies of SMES-FCL cooperative operation and positive-sequence dq current modification (PCM) are proposed to control the SC and RSC for enhancing the transient stability of the overall DFIG system. In addition to maintaining good FRT performance from the SMES-FCL on stabilising the electromagnetic torque, DC-link voltage, active and reactive power, and stator and rotor current during grid fault, the PCM control is also demonstrated in the simulations to suppress the transient oscillations and thus to shorten the recovery time after grid fault. Meanwhile, compared with conventional SMES-FCL scheme, the requirement of SC current capacity is much lowered for smoothing the DFIG output power under a varying wind speed condition and for enhancing the FRT performance under a grid fault condition.

Inspec keywords: power generation control; rotors; superconducting coils; power system transient stability; power generation protection; fault current limiters; superconducting magnet energy storage; asynchronous generators

Other keywords: modified RSC control; transient oscillation suppression; SC inductance parameter optimisation; modified SMES-FCL control; rotor-side converter; rotor-side mathematical model; SMES-FCL-based protection scheme; superconducting magnetic energy storage-fault current limiter; SC inductance parameter estimation; transient stability; grid-connected doubly fed induction generator; superconducting coil; FRT capability; DFIG fault ride-through capability enhancement

Subjects: Protection apparatus; Other energy storage; Storage in electrical energy; Power system control; Asynchronous machines; Superconducting coils and magnets; Stability in control theory; Control of electric power systems

References

    1. 1)
      • 32. Pannell, G., Atkinson, D.J., Zahawi, B.: ‘Minimum-threshold crowbar for a fault-ride-through grid-code-compliant DFIG wind turbine’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 750759.
    2. 2)
      • 21. Karaipoom, T., Ngamroo, I.: ‘Optimal superconducting coil integrated into DFIG wind turbine for fault ride through capability enhancement and output power fluctuation suppression’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 2842.
    3. 3)
      • 30. Hong, M., Xin, H. H., Liu, W. D., et al: ‘Critical short circuit ratio analysis on DFIG wind farm with vector power control and synchronized control’, J. Electr. Eng. Technol., 2016, 11, (2), pp. 320328.
    4. 4)
      • 33. ‘Wind turbines – Part 4: design and specification of gearboxes’, Standard ISO 81400-4, 2005.
    5. 5)
      • 13. Rashid, G., Ali, M.H.: ‘Nonlinear control-based modified BFCL for LVRT capacity enhancement of DFIG based wind farm’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 284295.
    6. 6)
      • 22. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 242254.
    7. 7)
      • 28. Zou, Y., Elbuluk, M.E., Sozer, Y.: ‘Simulation comparisons and implementation of induction generator wind power systems’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 11191128.
    8. 8)
      • 10. Hossain, M.M., Ali, M.H.: ‘Transient stability improvement of doubly fed induction generator based variable speed wind generator using DC resistive fault current limiter’, IET Renew. Power Gener., 2016, 10, (2), pp. 150157.
    9. 9)
      • 11. Ramirez, D., Martinez, S., Platero, C.A., et al: ‘Low-voltage ride-through capability for wind generators based on dynamic voltage restorers’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 195203.
    10. 10)
      • 9. Gounder, Y.K., Nanjundappan, D., Boominathan, V.: ‘Enhancement of transient stability of distribution system with SCIG and DFIG based wind farms using STATCOM’, IET Renew. Power Gener., 2016, 10, (8), pp. 11711180.
    11. 11)
      • 26. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 422432.
    12. 12)
      • 12. Okedu, K.E.: ‘Enhancing DFIG wind turbine during three-phase fault using parallel interleaved converters and dynamic resistor’, IET Renew. Power Gener., 2016, 10, (8), pp. 12111219.
    13. 13)
      • 34. Germany E.ON Netz GmbH Bayreuth: ‘Grid code, high and extra high voltage’. Available at http://www.eon-netz.com, 2006.
    14. 14)
      • 6. Lopez, J., Sanchis, P., Gubia, E., et al: ‘Control of doubly fed induction generator under symmetrical voltage dips’. 2008 IEEE Int. Symp. on Industrial Electronics, Cambridge, UK, 2008, pp. 24562462.
    15. 15)
      • 25. Ling, Y., Cai, X., Wang, N.B.: ‘Rotor current transient analysis of DFIG-based wind turbines during symmetrical voltage faults’, Energy Convers. Manag., 2013, 76, pp. 910917.
    16. 16)
      • 29. Rahimi, M., Parniani, M.: ‘Transient performance improvement of wind turbines with doubly fed induction generators using nonlinear control strategy’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 514525.
    17. 17)
      • 18. Guo, W.Y., Xiao, L.Y., Dai, S.T.: ‘Fault current limiter-battery energy storage system for the doubly-fed induction generator: analysis and experimental verification’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 653660.
    18. 18)
      • 24. Sun, T., Chen, Z., Blaabjerg, F.: ‘Transient stability of DFIG wind turbines at an external short-circuit fault’, Wind Energy, 2005, 8, (3), pp. 345360.
    19. 19)
      • 16. Khamaira, M.Y., Shiddiq Yunus, A.M., Abu-Siada, A.: ‘Mprovement of DFIG-based WECS performance using SMES unit’. 2013 Australasian Universities Power Engineering Conf. (AUPEC), Hobart, TAS, 2013, pp. 15.
    20. 20)
      • 5. Xiang, D.W., Ran, L., Tavner, P.J., et al: ‘Control of a doubly fed induction generator in a wind turbine during grid fault ride-through’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 652662.
    21. 21)
      • 19. Guo, W.Y., Xiao, L.Y., Dai, S.T.: ‘Enhancing low-voltage ride-through capability and smoothing output power of DFIG with a superconducting fault-current limiter–magnetic energy storage system’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 277295.
    22. 22)
      • 15. Shiddiq Yunus, A.M., Abu-Siada, A., Masoum, M.A.S.: ‘Application of SMES unit to improve DFIG power dispatch and dynamic performance during intermittent misfire and fire-through faults’, IEEE Trans. Appl. Supercond., 2013, 23, (4), p. 5701712.
    23. 23)
      • 20. Ngamroo, I.: ‘Optimization of SMES-FCL for augmenting FRT performance and smoothing output power of grid-connected DFIG wind turbine’, IEEE Trans. Appl. Supercond., 2016, 26, (7), pp. 15.
    24. 24)
      • 3. Rashid, G., Ali, M.H.: ‘Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 939947.
    25. 25)
      • 7. Zou, Z.C., Chen, X.Y., Li, C.S., et al: ‘Conceptual design and evaluation of a resistive-type SFCL for efficient fault ride through in a DFIG’, IEEE Trans. Appl. Supercond., 2016, 26, (1), p. 5600209.
    26. 26)
      • 27. Ou, R., Xiao, X.Y., Zou, Z.C., et al: ‘Cooperative control of SFCL and reactive power for improving the transient voltage stability of grid-Connected wind farm with DFIGs’, IEEE Trans. Appl. Supercond., 2016, 26, (7), p. 5402606.
    27. 27)
      • 23. Varol, A., Ilkilic, C., Varol, Y.: ‘Increasing the efficiency of wind turbines’, J. Wind Eng. Ind. Aerodyn., 2001, 89, (9), pp. 809815.
    28. 28)
      • 31. Morren, J., De Haan, S.W.H.: ‘Short-circuit current of wind turbines with doubly fed induction generator’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 174180.
    29. 29)
      • 17. Zou, Z.C., Xiao, X.Y., Liu, Y.F., et al: ‘Integrated protection of DFIG-based wind turbine with a resistive-type SFCL under symmetrical and asymmetrical faults’, IEEE Trans. Appl. Supercond., 2016, 26, (7), p. 5603005.
    30. 30)
      • 1. Yang, L., Yang, G.Y., Xu, Z., et al: ‘Optimal controller design of a doubly-fed induction generator wind turbine system for small signal stability enhancement’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 579597.
    31. 31)
      • 14. Shen, Y.W., Ke, D.P., Sun, Y.Z., et al: ‘Advanced auxiliary control of an energy storage device for transient voltage support of a doubly Fed induction generator’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 6376.
    32. 32)
      • 2. Cartwright, P., Holdsworth, L., Ekanayake, J.B., et al: ‘Co-ordinated voltage control strategy for a doubly-fed induction generator (DFIG)-based wind farm’, IEE Proc.-Gener. Transm. Distrib., 2004, 151, (4), pp. 495502.
    33. 33)
      • 8. Abad, G., López, J., Rodríguez, M., et al: ‘Doubly Fed induction machine: modeling and control for wind energy generation’ (Wiley-IEEE Press, Hoboken, NJ, USA, 2011).
    34. 34)
      • 4. Muller, S., Deicke, M., De Doncker, R.W.: ‘Doubly fed induction generator systems for wind turbines’, IEEE Ind. Appl. Mag., 2002, 8, (3), pp. 2633.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2136
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading