Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-objective Taguchi approach for optimal DG integration in distribution systems

This study presents a new multi-objective Taguchi approach for optimal integration of distributed generations (DGs) in small and large scale distribution networks. The Taguchi method (TM) is a statistical method and employs orthogonal arrays (OAs) to estimate the output response in less number of computations. In every cycle, OA is updated according to mean response of each parameter at its respective levels in the previous cycle. A new node priority list is proposed to guide TM to select promising nodes. For multi-objective problems, a trade-off is developed between various objectives using the technique for order of preference by similarity to ideal solution that reduces Euclidean distances of various objectives from their best solutions and increases Euclidean distances from their worst solutions. A multi-objective DG integration problem is formulated to demonstrate the applicability of the proposed approach and tested on IEEE 33-bus, 118-bus and a practical 201-bus radial distribution systems. The simulation results are compared with existing multi-objective optimisation techniques used for optimal DG integration problems in the literature and found to be promising.

References

    1. 1)
      • 16. Liu, Z., Wen, F., Ledwich, G.: ‘Optimal siting and sizing of distributed generators in distribution systems considering uncertainties’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25412551.
    2. 2)
      • 13. Kanwar, N., Gupta, N., Niazi, K.R., et al: ‘Improved meta-heuristic techniques for simultaneous capacitor and DG allocation in radial distribution networks’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 653664.
    3. 3)
      • 23. Liu, D., Cai, Y.: ‘Taguchi method for solving the economic dispatch problem with nonsmooth cost functions’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 20062014.
    4. 4)
      • 4. Acharya, N., Mahat, P., Mithulananthan, N.: ‘An analytical approach for DG allocation in primary distribution network’, Int. J. Electr. Power Energy Syst., 2006, 28, (10), pp. 669678.
    5. 5)
      • 14. Nekooei, K., Farsangi, M.M., Pour, H.N., et al: ‘An improved multi-objective harmony search for optimal placement of DGs in distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 557567.
    6. 6)
      • 22. Roy, R.K.: ‘A primer on the Taguchi method, society of manufacturing engineers’ (Van Nostrand Reinhold, Dearborn, MI, USA, 1990).
    7. 7)
      • 2. Meena, N.K., Swarnkar, A., Gupta, N., et al: ‘A Taguchi-based approach for optimal placement of distributed generations for power loss minimization in distribution system’. Proc. IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 15.
    8. 8)
      • 21. Kim, K.H., Song, K.B., Joo, S.K., et al: ‘Multiobjective distributed generation placement using fuzzy goal programming with genetic algorithm’, Eur. Trans. Electr. Power, 2008, 18, (3), pp. 217230.
    9. 9)
      • 33. Zavadskas, E.K., Peldschus, F., Kaklauskas, A.: ‘Multiple criteria evaluation of projects in construction’ (Technika, Vilnius, 1994).
    10. 10)
      • 8. Injeti, S.K., Kumar, N.P.: ‘A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems’, Int. J. Electr. Power Energy Syst., 2013, 45, pp. 142151.
    11. 11)
      • 31. Yoon, K.: ‘A reconciliation among discrete compromise situations’, J. Oper. Res. Soc., 1987, 38, pp. 277286.
    12. 12)
      • 18. Georgilakis, P.S., Hatziargyriou, N.D.: ‘Optimal distributed generation placement in power distribution networks: models, methods, and future research’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34203428.
    13. 13)
      • 24. Yu, H., Chung, C.Y., Wong, K.P.: ‘Robust transmission network expansion planning method with Taguchi's orthogonal array testing’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 15731580.
    14. 14)
      • 6. Naik, S.N.G., Khatod, D.K., Sharma, M.P.: ‘Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks’, IET Gener. Transm. Distrib., 2015, 9, (3), pp. 209220.
    15. 15)
      • 7. Esmaili, M.: ‘Placement of minimum distributed generation units observing power losses and voltage stability with network constraints’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 813821.
    16. 16)
      • 27. Basetti, V., Ashwani, K.C.: ‘Hybrid power system state estimation using Taguchi differential evolution algorithm’, IET Sci. Measur. Technol., 2015, 9, (4), pp. 449466.
    17. 17)
      • 30. Hwang, C.L., Yoon, K.: ‘Multiple attribute decision making: methods and applications’ (Springer-Verlag, New York, 1981).
    18. 18)
      • 20. Celli, G., Ghiani, E., Mocci, S., et al: ‘A multiobjective evolutionary algorithm for the sizing and siting of distributed generation’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 750757.
    19. 19)
      • 19. Haghifam, M.R., Falaghi, H., Malik, O.P.: ‘Risk-based distributed generation placement’, IET Gener. Transm. Distrib., 2008, 2, (2), pp. 252260.
    20. 20)
      • 32. Fiedler, K., Peldschus, F., Zavadskas, E.K.: ‘Methoden der bautechnologischen entscheidung’ (Technische Hochschule Leipzig, 1986).
    21. 21)
      • 26. Alizadeh, B., Jadid, S.: ‘Uncertainty handling in power system expansion planning under a robust multi-objective framework’, IET Gener. Trans. Distrib., 2014, 8, (12), pp. 20122026.
    22. 22)
      • 35. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    23. 23)
      • 28. Paterakis, N.G., Mazza, A., Santos, S.F., et al: ‘Multi-objective reconfiguration of radial distribution systems using reliability indices’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 10481062.
    24. 24)
      • 34. Triantaphyllou, E.: ‘Multi-criteria decision making methods: a comparative study’ (Kluwer Academic Publishers, 2000).
    25. 25)
      • 11. Sultana, S., Roy, P.K.: ‘Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 534545.
    26. 26)
      • 3. Rao, R.S., Ravindra, K., Satish, K., et al: ‘Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 317325.
    27. 27)
      • 5. Hung, D.Q., Mithulananthan, N.: ‘Multiple distributed generator placement in primary distribution networks for loss reduction’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 17001708.
    28. 28)
      • 36. Zhang, D., Fu, Z., Zhang, L.: ‘An improved TS algorithm for loss minimum reconfiguration in large-scale distribution systems’, Int. J. Electr. Power Syst. Res., 2007, 77, (5-6), pp. 685694.
    29. 29)
      • 25. Hasanien, H.M., Muyeen, S.M.: ‘A Taguchi approach for optimum design of proportional–integral controllers in cascaded control scheme’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 16361644.
    30. 30)
      • 15. Anwar, A., Mahmud, M.A., Hossain, M.J., et al: ‘Distributed generation capacity planning for distribution networks to minimize energy loss: an unbalanced multi-phase optimal power flow based approach’, in Shandilya, S., Shandilya, S., Thakur, T., Nagar, A.K. (Eds.): ‘Handbook of research on emerging technologies for electrical power planning, analysis, and optimization’ (IGI Global, 2016), pp. 7695.
    31. 31)
      • 10. Moradi, M.H., Abedini, M.: ‘A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems’, Int. J. Electr. Power Energy Syst., 2012, 34, (1), pp. 6674.
    32. 32)
      • 12. Moradi, M.H., Abedini, M.: ‘A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems’. Proc. Int. Power Energy Conf., October 2010, pp. 858862.
    33. 33)
      • 1. Poornazaryan, B., Karimyan, P., Gharehpetian, G.B., et al: ‘Optimal allocation and sizing of DG units considering voltage stability, losses and load variations’, Int. J. Electr. Power Energy Syst., 2016, 79, pp. 4252.
    34. 34)
      • 37. Jesus, P.M.D.O.D.: ‘Remuneration of distributed generation: a holistic approach’. PhD dissertation thesis, Porto Portugal, 2007.
    35. 35)
      • 17. Vinothkumar, K., Selvan, M.P.: ‘Distributed generation planning: a new approach based on goal programming’, Electr. Power Compon. Syst., 2012, 40, (5), pp. 497512.
    36. 36)
      • 9. Sheng, W., Liu, K.Y., Liu, Y., et al: ‘Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm II’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 569578.
    37. 37)
      • 29. Kantubukta, V., Maheshwari, S., Mahapatra, S., et al: ‘Energy and quality of service aware FUZZY-technique for order preference by similarity to ideal solution based vertical handover decision algorithm for heterogeneous wireless networks’, IET Netw., 2013, 2, (3), pp. 103114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2126
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2126
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address