access icon free Leakage current analysis of polymeric insulators under uniform and non-uniform pollution conditions

This study presents two different methods under uniform and non-uniform pollution layer in order to measure and calculate the leakage current (LC) of silicone rubber insulators. Experimental test for evaluating the LC analysis of polluted insulator have been done in a laboratory clean fog chamber. The electric field and potential distributions were obtained from finite element method software for 3D models. The mathematical background and circuit theory are described in details by a section of insulator and using the extended form factor formula. The surface conductivity used in the calculations was extracted from the measured LC after wetting rate. LC characteristics under 1 : 1, 1 : 2, 1 : 5 and 1 : 10 ratios of top to bottom surface salt deposit density on polymeric insulators are studied. To verify the proposed models of this study, the results of experimental data and two other approaches are compared with together before dry-band formation. Moreover, a dynamic LC model under uniform pollution layer has been introduced and extended in order to calculate the LC when the formation of dry-bands along the insulator surface occurs. The dynamic model is drawn from experimental data and measured surface conductivity.

Inspec keywords: electric fields; fog; polymer insulators; surface conductivity; silicone rubber insulators; wetting; finite element analysis; insulator contamination; leakage currents

Other keywords: finite element method software; bottom surface salt deposit density; polluted insulator LC analysis; potential distributions; 3D models; circuit theory; electric field; wetting rate; laboratory clean fog chamber; polymeric insulator leakage current analysis; dynamic LC model; uniform pollution conditions; silicone rubber insulators; nonuniform pollution conditions; dry-band formation; extended form factor formula; surface conductivity

Subjects: Power system protection; Power line supports, insulators and connectors; Finite element analysis; Environmental factors

References

    1. 1)
      • 25. Joneidi, I.A., Kamarposhti, M.A., Akmal, A.A.S., et al: ‘Leakage current analysis, FFT calculation and electric field distribution under water droplet on polluted silicon rubber insulator’, Electr. Eng., 2013, 95, (4), pp. 315323.
    2. 2)
      • 41. Tang, L., Raghuveer, M.: ‘Modelling of Hvdc wall bushing flashover due to uneven wetting’, IEEE Trans. Power Deliv., 1999, 14, (1), pp. 194199.
    3. 3)
      • 31. Standard, I.: ‘60815’, ‘Selection and dimensioning of high-voltage insulators intended for use in polluted conditions’, 2008.
    4. 4)
      • 37. Bo, L., Gorur, R.: ‘Modeling flashover of Ac outdoor insulators under contaminated conditions with dry band formation and arcing’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 10371043.
    5. 5)
      • 2. Farzaneh, M.: ‘Atmospheric icing of power networks’ (Springer Science & Business Media, 2008).
    6. 6)
      • 23. Zhang, Z., Liu, X., Jiang, X., et al: ‘Effect of non-uniform pollution on the Ac flashover performance of Xp-160 suspension ceramic insulator string’, Gaodianya Jishu/High Voltage Eng., 2013, 39, (2), pp. 280286.
    7. 7)
      • 10. Zhang, Z., Jiang, X., Huang, H., et al: ‘Study on the wetting process and its influencing factors of pollution deposited on different insulators based on leakage current’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 678685.
    8. 8)
      • 36. Samimi, M.H., Mostajabi, A.H., Ahmadi-Joneidi, I., et al: ‘Performance evaluation of insulators using flashover voltage and leakage current’, Electr. Power Compon. Syst., 2013, 41, (2), pp. 221233.
    9. 9)
      • 35. Sima, W., Yuan, T., Yang, Q., et al: ‘Effect of non-uniform pollution on the withstand characteristics of extra high voltage (Ehv) suspension ceramic insulator string’, IET. Gener. Transm. Distrib., 2010, 4, (3), pp. 445455.
    10. 10)
      • 16. Suda, T.: ‘Frequency characteristics of leakage current waveforms of an artificially polluted suspension insulator’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (4), pp. 705709.
    11. 11)
      • 29. Que, W., Casale, E.P., Sebo, S.A.: ‘Voltage-current phase angle measurements during aging tests of polymer insulators’. Electrical Insulation and Dielectric Phenomena, 2002 Annual Report Conf. on, 2002.
    12. 12)
      • 22. Zhang, Z., You, J., Wei, D., et al: ‘Investigations on Ac pollution flashover performance of insulator string under different non-uniform pollution conditions’, IET. Gener. Transm. Distrib., 2016, 10, (2), pp. 437443.
    13. 13)
      • 5. Joneidi, I., Jadidian, J., Karimpour, R., et al: ‘Effects of ultraviolet radiation and artificial pollution on the leakage current of silicon rubber insulators’. 2011 Electrical Insulation Conf. (EIC), 2011.
    14. 14)
      • 6. Farhadinejad, Z., Ehsani, M., Ahmadi-Joneidi, I., et al: ‘Effects of Uvc radiation on thermal, electrical and morphological behavior of silicone rubber insulators’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (5), pp. 17401749.
    15. 15)
      • 32. Ahmad, H., Salam, M., Ying, L.Y., et al: ‘Harmonic components of leakage current as a diagnostic tool to study the aging of insulators’, J. Electrost., 2008, 66, (3), pp. 156164.
    16. 16)
      • 38. Abd-Rahman, R., Haddad, A., Harid, N., et al: ‘Stress control on polymeric outdoor insulators using zinc oxide microvaristor composites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (2), pp. 705713.
    17. 17)
      • 21. El-Hag, A.H.: ‘Leakage current characterization for estimating the conditions of non-ceramic insulators’ surfaces’, Electr. Power Syst. Res., 2007, 77, (3), pp. 379384.
    18. 18)
      • 9. Abbasi, A., Shayegani, A., Niayesh, K.: ‘Pollution performance of Hvdc Sir insulators at extra heavy pollution conditions’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 721728.
    19. 19)
      • 28. Nekahi, A., McMeekin, S., Farzaneh, M.: ‘Effect of dry band location on electric field distribution along a polymeric insulator under contaminated conditions’. Power Engineering Conf. (UPEC), 2015 50th Int. Universities, 2015.
    20. 20)
      • 39. Abd Rahman, R., Haddad, A., Harid, N.: ‘Dynamic nonlinear model for polluted outdoor insulators’, 2011.
    21. 21)
      • 11. Pylarinos, D., Theofilatos, K., Siderakis, K., et al: ‘Discharges classification using genetic algorithms and feature selection algorithms on time and frequency domain data extracted from leakage current measurements’, Eng. Technol. Appl. Sci. Res., 2013, 3, (6), pp. 544548.
    22. 22)
      • 33. Joneidi, I., Ghorbandaeipour, A., Majzobi, A., et al: ‘Investigations of ultra violet influence on the surface of silicone rubber insulator’. The Proc. of 17th Int. Symp. on High Voltage Engineering, Hannover, Germany, 2011.
    23. 23)
      • 15. Pylarinos, D., Siderakis, K., Pyrgioti, E.: ‘Measuring and analyzing leakage current for outdoor insulators and specimens’, Rev. Adv. Mater. Sci., 2011, 29, (11), pp. 3153.
    24. 24)
      • 8. Ali, M., Hackam, R.: ‘Effects of saline water and temperature on surface properties of Htv silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 13681378.
    25. 25)
      • 17. Pylarinos, D., Theofilatos, K., Siderakis, K., et al: ‘Investigation and classification of field leakage current waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 21112118.
    26. 26)
      • 27. Phillips, A., Childs, D., Schneider, H.: ‘Aging of nonceramic insulators due to corona from water drops’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10811089.
    27. 27)
      • 1. Hileman, A.R.: ‘Insulation coordination for power systems’ (CRC Press, 1999).
    28. 28)
      • 26. El-Hag, A.H., Jayaram, S., Cherney, E.: ‘Calculation of leakage current density of silicone rubber insulators under accelerated aging conditions’, J. Electrost., 2009, 67, (1), pp. 4853.
    29. 29)
      • 40. Williams, D., Haddad, A., Rowlands, A., et al: ‘Formation and characterization of dry bands in clean fog on polluted insulators’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 724731.
    30. 30)
      • 20. El-Hag, A.H., Jayaram, S.H., Cherney, E.A.: ‘Fundamental and low frequency harmonic components of leakage current as a diagnostic tool to study aging of Rtv and Htv silicone rubber in salt-fog’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (1), pp. 128136.
    31. 31)
      • 14. Ghosh, R., Chatterjee, B., Chakravorti, S.: ‘A method for unambiguous identification of on-field recorded insulator leakage current waveforms portraying electrical activity on the surface’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 21562164.
    32. 32)
      • 13. Kordkheili, H.H., Abravesh, H., Tabasi, M., et al: ‘Determining the probability of flashover occurrence in composite insulators by using leakage current harmonic components’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (2), pp. 502512.
    33. 33)
      • 19. Suda, T.: ‘Frequency characteristics of leakage current waveforms of a string of suspension insulators’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 481487.
    34. 34)
      • 4. Haddad, G., Gupta, R., Wong, K.: ‘Visualization of multi-factor changes in Htv silicone rubber in response to environmental exposures’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 21902198.
    35. 35)
      • 7. Ahmadi-Joneidi, I., Majzoobi, A., Shayegani-Akmal, A.A., et al: ‘Aging evaluation of silicone rubber insulators using leakage current and flashover voltage analysis’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 212220.
    36. 36)
      • 42. Allen, N., Ghaffar, A.: ‘The conditions required for the propagation of a cathode-directed positive streamer in air’, J. Phys. D Appl. Phys., 1995, 28, (2), p. 331.
    37. 37)
      • 3. Gubanski, S.: ‘Modern outdoor insulation-concerns and challenges’, IEEE Electr. Insul. Mag., 2005, 21, (6), pp. 511.
    38. 38)
      • 30. Pub, I.: ‘60507’, ‘Artificial pollution tests on high voltage insulators to be used on AC systems’, 1991.
    39. 39)
      • 18. Suwarno, F.: ‘Study on the waveform of leakage current on the 20 kV post-pin ceramic insulators under various conditions’. Proc. of the Int. Symp. on Electrical Insulating Materials, 2001.
    40. 40)
      • 34. El-Zohri, E.H., Ziedan, H., Procházka, R.: ‘A new proposed dynamic Arc model for flashover performance of a non-uniform polluted insulator string under Hvac stress’, Electr. Power Syst. Res., 2015, 119, pp. 278286.
    41. 41)
      • 12. Pylarinos, D., Siderakis, K., Pyrgioti, E., et al: ‘Investigation of leakage current waveforms recorded in a coastal high voltage substation’, Eng. Technol. Appl. Sci. Res., 2011, 1, (3), pp. 6369.
    42. 42)
      • 24. Zhang, Z., Liu, X., Jiang, X., et al: ‘Study on Ac flashover performance for different types of porcelain and glass insulators with non-uniform pollution’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 16911698.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2101
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2101
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading