Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Reactive power sharing improvement of droop-controlled DFIG wind turbines in a microgrid

This study presents an innovative control scheme to improve the power sharing among doubly-fed induction generator (DFIG) wind units in a medium-voltage (MV) microgrid. The control objectives of DFIGs in an islanded mode of microgrid operation are to achieve: (i) stabilisation of the microgrid voltage amplitude and frequency, (ii) proper active/reactive power sharing among wind units. To satisfy these requirements, the DFIG control loop based on the traditional droop control is designed. This method, however, cannot satisfactorily operate in a MV microgrid with dominantly resistive line impedances from power sharing point of view. To overcome this problem, a modified control strategy is proposed in this study. The mathematical modelling is developed, and time-domain simulations are presented to verify the novel control scheme in a typical microgrid case study.

References

    1. 1)
      • 5. Vidyanandan, K.V., Senroy, N.: ‘Frequency regulation in a wind-diesel powered microgrid using flywheels and fuel cells’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 780788.
    2. 2)
      • 20. Fazeli, M., Asher, G.M., Klumpner, C., et al: ‘Novel integration of wind generator-energy storage systems within microgrids’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 728737.
    3. 3)
      • 30. Hoch, M.: ‘Comparison of PLC G3 and PRIME’. Proc. IEEE Int. Symp. Power Line Communications, Udine, Italy, April 2011, pp. 165169.
    4. 4)
      • 11. Margaris, I.D., Papathanassiou, S.A., Hatziargyriou, N.D., et al: ‘Frequency control in autonomous power systems with high wind power penetration’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 189199.
    5. 5)
      • 18. Arani, M.F.M., Mohamed, Y.A.I.: ‘Analysis and impacts of implementing droop control in DFIG-based wind turbines on microgrid/weak-grid stability’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 385396.
    6. 6)
      • 7. Aghatehrani, R., Kavasseri, R.: ‘Reactive power management of a DFIG wind system in microgrids based on voltage sensitivity analysis’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 451458.
    7. 7)
      • 1. Lasseter, B.R.H.: ‘Smart distribution: coupled microgrids’. Proc. IEEE, June 2011, pp. 10741082.
    8. 8)
      • 15. Shahabi, M., Haghifam, M.R., Mohamadian, M., et al: ‘Microgrid dynamic performance improvement using a doubly fed induction wind generator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 137145.
    9. 9)
      • 25. De, D., Ramanarayanan, V.: ‘Decentralized parallel operation of inverters sharing unbalanced and nonlinear loads’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 30153025.
    10. 10)
      • 9. Kayikçi, M., Milanović, J.V.: ‘Dynamic contribution of DFIG-based wind plants to system frequency disturbances’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 859867.
    11. 11)
      • 10. Arani, M.F.M., El-Saadany, E.F.: ‘Implementing virtual inertia in DFIG-based wind power generation’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13731384.
    12. 12)
      • 3. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    13. 13)
      • 27. Leonhard, W.: ‘Control of electrical drives’ (Springer Press, Berlin, 2001, 3rd edn).
    14. 14)
      • 17. Bhuiyan, F.A., Yazdani, A.: ‘Multimode control of a DFIG-based wind-power unit for remote applications’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 20792089.
    15. 15)
      • 23. Matas, J., Castilla, M., Garcia de Vicuna, L., et al: ‘Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general-integrator scheme’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29933002.
    16. 16)
      • 13. Kanellos, F.D., Hatziargyriou, N.D.: ‘Optimal control of variable speed wind turbines in islanded mode of operation’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 11421151.
    17. 17)
      • 28. Krause, P.C., Wasynczuk, O., Sudhoff, S.D., et al: ‘Analysis of electric machinery and drive systems’ (Wiley-IEEE Press, New York, 2013, 3rd edn).
    18. 18)
      • 14. Zhang, Y., Ooi, B.T.: ‘Stand-alone doubly-fed induction generators (DFIGs) with autonomous frequency control’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 752760.
    19. 19)
      • 16. Kanellos, F.D., Hatziargyriou, N.D.: ‘Control of variable speed wind turbines in islanded mode of operation’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 11421151.
    20. 20)
      • 21. Engler, A., Soultanis, N.: ‘Droop control in LV-grids’. Future Power Systems Int. Conf., Amsterdam, Netherlands, November 2005, pp. 16.
    21. 21)
      • 2. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Power Energy Mag.., 2008, 6, (3), pp. 5465.
    22. 22)
      • 8. Aghatehrani, R., Kavasseri, R.: ‘Sensitivity-analysis-based sliding mode control for voltage regulation in microgrids’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 5057.
    23. 23)
      • 26. Pena, R., Clare, J.C., Asher, G.M.: ‘A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine’. Proc. IEE Electric Power Applications, September 1996, pp. 380387.
    24. 24)
      • 29. Galli, S., Scaglione, A.: ‘For the grid and through the grid: the role of power line communications in the smart grid’. Proc. IEEE, May 2011, pp. 9981027.
    25. 25)
      • 22. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    26. 26)
      • 4. Gyawali, N., Ohsawa, Y., Yamamoto, O.: ‘Power dispatching from cage induction generator based wind power system with integrated smart energy storage’, IEEJ Trans. Electr. Electron. Eng., 2011, 6, (2), pp. 134143.
    27. 27)
      • 12. Pham, H.V., Rueda, J.L., Erlich, I.: ‘Probabilistic evaluation of voltage and reactive power control methods of wind generators in distribution networks’, IET Renew. Power Gener., 2015, 9, (3), pp. 195206.
    28. 28)
      • 6. Lin, J., Sun, Y., Song, Y.: ‘Wind power fluctuation smoothing controller based on risk assessment of grid frequency deviation in an isolated system’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 379392.
    29. 29)
      • 24. He, J., Li, Y.W., Guerrero, J.M., et al: ‘An islanding microgrid power sharing approach using enhanced virtual impedance control scheme’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 52725282.
    30. 30)
      • 19. Fazeli, M., Asher, G.M., Klumpner, C., et al: ‘Novel integration of DFIG-based wind generators within microgrids’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 840850.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2086
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address