access icon free Adaptive wide-area power oscillation damper design for photovoltaic plant considering delay compensation

With the increasing amount of grid-connected photovoltaic (PV) plants in a power system, the volatility and uncertainty of power generated from PV plants may adversely impact on the power system stability, for example increasing the risk of interarea oscillation. To solve the problem, this study proposes an adaptive wide-area power oscillation damper (WPOD) based on goal representation heuristic dynamic programming (GrHDP) algorithm for PV plant to enhance damping of the concerned interarea mode. By using GrHDP, the adaptive WPOD (A-WPOD) does not need the model of the power system and has adaptivity to different operating conditions. Moreover, an adaptive delay compensator is also employed for the proposed A-WPOD to compensate the communication delay existing in the wide-area signal. Case study is carried out on a 16-machine 68-bus system with a large-scale PV plant. Simulation results show that the A-WPOD can provide satisfactory damping performance and compensate the communication delay over a wide range of operating conditions.

Inspec keywords: photovoltaic power systems; power system stability; dynamic programming; wide area networks

Other keywords: damping enhancement; power system model; interarea oscillation risk; adaptive delay compensator; adaptive wide-area power oscillation damper design; A-WPOD; grid-connected photovoltaic plants; grid-connected PV plants; power system stability; adaptive WPOD; communication delay; large-scale PV plant; 16-machine 68-bus system; wide-area signal; damping performance; adaptive wide-area power oscillation damper; goal representation heuristic dynamic programming algorithm; GrHDP algorithm

Subjects: Computer communications; Solar power stations and photovoltaic power systems; Optimisation techniques; Other computer networks; Optimisation techniques

References

    1. 1)
      • 40. He, H.B., Ni, Z., Jian, F.: ‘A three-network architecture for on-line learning and optimization based on adaptive dynamic programming’, Neurocomputing, 2012, 78, pp. 313.
    2. 2)
      • 46. Zhang, X., Lu, C., Xie, X., et al: ‘Stability analysis and controller design of a wide-area time-delay system based on the expectation model method’, IEEE Trans. Smart Grid, 2016, 7, pp. 520529.
    3. 3)
      • 9. Zhang, Y., Bose, A.: ‘Design of wide-area damping controllers for interarea oscillations’, IEEE Trans. Power Syst., 2008, 23, pp. 11361143.
    4. 4)
      • 39. Ni, Z., Tang, Y.F., Sui, X., et al: ‘An adaptive neuro-control approach for multi-machine power systems’, Int. J. Electr. Power Energy Syst., 2016, 75, pp. 108116.
    5. 5)
      • 4. Du, W., Wang, H.F., Xiao, L.-Y.: ‘Power system small-signal stability as affected by grid-connected photovoltaic generation’, Eur. Trans. Electr. Power, 2011, 21, pp. 688703.
    6. 6)
      • 31. Yao, W., Jiang, L., Wu, Q.H., et al: ‘Wide-area damping controller for power system inter-area oscillations: a networked predictive control approach’, IEEE Trans. Control Syst. Technol., 2015, 23, pp. 2736.
    7. 7)
      • 1. Liu, J., Wen, J.Y., Yao, W., et al: ‘Solution to short-term frequency response of wind farms by using energy storage systems’, IET Renew. Power Gener., 2016, 5, pp. 669678.
    8. 8)
      • 45. Yao, W., Jiang, L., Wen, J.Y., et al: ‘Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays’, IEEE Trans. Power Syst., 2014, 29, pp. 318329.
    9. 9)
      • 27. Cheng, L., Chen, G., Gao, W.Z., et al: ‘Adaptive time delay compensator (ATDC) design for wide-area power system’, IEEE Trans. Smart Grid, 2014, 5, pp. 29572966.
    10. 10)
      • 37. Tang, Y.F., He, H.B., Ni, Z., et al: ‘Reactive power control of grid-connected wind farm based on adaptive dynamic programming’, Neurocomputing, 2014, 125, pp. 125133.
    11. 11)
      • 42. Singer, S., Rozenshtein, B., Surazi, S.: ‘Characterization of PV array output using a small number of measured parameters’, Sol. Energy, 1984, 32, pp. 603607.
    12. 12)
      • 3. Renewable energy policy network for the 21st century official web site: ‘Renewables 2015 global status report’, 2015. Available at: http://www.ren21.net/wp-content/uploads/2016/10/REN21_GSR2016_FullReport_en_11.pdf.
    13. 13)
      • 23. Li, J., Chen, Z.H., Cai, D.S., et al: ‘Delay-dependent stability control for power system with multiple time-delays’, IEEE Trans. Power Syst., 2016, 31, pp. 23162326.
    14. 14)
      • 16. Shakarami, M.R., Davoudkhani, I.F.: ‘Wide-area power system stabilizer design based on grey wolf optimization algorithm considering the time delay’, Electr. Power Syst. Res., 2016, 133, pp. 149159.
    15. 15)
      • 6. Shah, R., Mithulananthan, N., Bansal, R.C.: ‘Oscillatory stability analysis with high penetrations of large-scale photovoltaic generation’, Energy Convers. Manage., 2013, 65, pp. 420429.
    16. 16)
      • 28. Mokhtari, M., Aminifar, F.: ‘Toward wide-area oscillation control through doubly-fed induction generator wind farms’, IEEE Trans. Power Syst., 2014, 29, pp. 29852992.
    17. 17)
      • 32. Chaudhuri, N.R., Ray, S., Majumder, R., et al: ‘A new approach to continuous latency compensation with adaptive phasor power oscillation damping controller (POD)’, IEEE Trans. Power Syst., 2010, 25, pp. 939946.
    18. 18)
      • 29. Mokhtari, M., Aminifar, F., Nazarpour, D., et al: ‘Widearea power oscillation damping with a fuzzy controller compensating the continuous communication delays’, IEEE Trans. Power Syst., 2013, 28, pp. 19972005.
    19. 19)
      • 5. Shah, R., Mithulananthan, N., Lee, K.Y.: ‘Contribution of PV systems with ultracapacitor energy storage on inter-area oscillation’. 2011 IEEE Power Energy Society General Meeting, 2011, pp. 18.
    20. 20)
      • 15. Kamalasadan, S., Swann, G.D.: ‘A novel system-centric intelligent adaptive control architecture for damping interarea mode oscillations in power system’, IEEE Trans. Ind. Appl., 2011, 47, pp. 14871497.
    21. 21)
      • 11. Kim, S.-J., Kwon, S.Y., Moon, -H.: ‘Low-order robust power system stabilizer for single machine systems: an LMI approach’, Int. J. Control Autom. Syst., 2010, 8, pp. 556563.
    22. 22)
      • 34. Venayagamoorthy, G.K., Sharma, R.K., Gautam, P.K., et al: ‘Dynamic energy management system for a smart microgrid’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, pp. 16431656.
    23. 23)
      • 41. WECC Guide for Representation of Photovoltaic Systems in Large-Scale Load Flow Simulations, WECC Renewable Energy Modeling Task Force Report, August2010.
    24. 24)
      • 14. Jiang, L., Yao, W., Wen, J.Y., et al: ‘Delay-dependent stability for load frequency control with constant and time-varying delays’, IEEE Trans. Power Syst., 2012, 27, pp. 932941.
    25. 25)
      • 43. Clark, K., Miller, N.W., Walling, R.: ‘Modeling of GE solar photovoltaic plants for grid studies’ (General Electrical International, Inc., Schenectady, NY, 2010).
    26. 26)
      • 33. Beiraghi, M., Ranjbar, A.M.: ‘Adaptive delay compensator for the robust wide-area damping controller design’, IEEE Trans. Power Syst., 2016, 31, pp. 49664976.
    27. 27)
      • 35. Guo, W., Liu, F., Si, J., et al: ‘Online supplementary ADP learning controller design and application to power system frequency control with large-scale wind energy integration’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, pp. 17481761.
    28. 28)
      • 8. Shah, R., Mithulananthan, N., Lee, K.Y., et al: ‘Wide-area measurement signal-based stabiliser for large-scale photovoltaic plants with high variability and uncertainty’, IET Renew. Power Gener., 2013, 7, pp. 614622.
    29. 29)
      • 21. Li, Y., Yang, Z., Fang, L., et al: ‘Design and implementation of delay-dependent wide area damping control for stability enhancement of power systems’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 112.
    30. 30)
      • 19. Yohanandhan, R.V., Srinivasan, L.: ‘Decentralised wide-area fractional order damping controller for a large-scale power system’, IET Gener. Transm. Distrib., 2016, 10, pp. 11641178.
    31. 31)
      • 17. Chaudhuri, B., Majumder, R., Pal, B.C.: ‘Wide-area measurement based stabilizing control of power system considering signal transmission delay’, IEEE Trans. Power Syst., 2004, 19, pp. 19711979.
    32. 32)
      • 24. Zhang, S., Vittal, V.: ‘Design of wide-area damping control robust to transmission delay using μ -synthesis approach’. 2014 IEEE Power and Energy Society General Meeting, 2014, pp. 15.
    33. 33)
      • 7. Lal, V.N., Siddhardha, M., Singh, S.N.: ‘Control of a large scale single-stage grid-connected PV system utilizing MPPT and reactive power capability’. 2013 IEEE Power and Energy Society General Meeting, 2013, pp. 15.
    34. 34)
      • 12. Shah, R., Mithulananthan, N., Lee, K.Y.: ‘Large-scale PV plant with a robust controller considering power oscillation damping’, IEEE Trans. Energy Convers., 2013, 28, pp. 106114.
    35. 35)
      • 10. Ke, D.P., Chung, C.Y., Xue, Y.: ‘An eigenstructure-based performance index and its application to control design for damping interarea oscillations in power systems’, IEEE Trans. Power Syst., 2011, 26, pp. 23712380.
    36. 36)
      • 36. Lu, C., Si, J., Xie, X.: ‘Direct heuristic dynamic programming for damping oscillations in a large power system’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2008, 38, pp. 10081013.
    37. 37)
      • 38. Sui, X.C., Tang, Y.F., He, H.B., et al: ‘Energy storage based low frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming’, IEEE Trans. Power Syst., 2014, 29, pp. 25392548.
    38. 38)
      • 13. Yao, W., Jiang, L., Wu, Q.H., et al: ‘Delay-dependent stability analysis of the power system with a wide-area damping controller embedded’, IEEE Trans. Power Syst., 2011, 26, pp. 233240.
    39. 39)
      • 18. Bai, F.F., Zhu, L., Liu, Y.L., et al: ‘Design and implementation of a measurement-based adaptive wide-area damping controller considering time delays’, Electr. Power Syst. Res., 2016, 130, pp. 19.
    40. 40)
      • 30. Lu, C., Zhang, X., Wang, X., et al: ‘Mathematical expectation modeling of wide-area controlled power systems with stochastic time delay’, IEEE Trans. Smart Grid, 2015, 6, pp. 15111519.
    41. 41)
      • 22. Preece, R., Milanović, J.V., Almutairi, a.m., et al: ‘Damping of inter-area oscillations in mixed AC/DC networks using WAMS based supplementary controller’, IEEE Trans. Power Syst., 2013, 28, pp. 11601169.
    42. 42)
      • 44. Canizares, C., Fernandes, T., Junior, E.G., et al: ‘Benchmark models for the analysis and control of small-signal oscillatory dynamics in power systems’, IEEE Trans. Power Syst., 2017, 32, pp. 715722.
    43. 43)
      • 25. Zhang, P., Yang, D.Y., Chan, K.W., et al: ‘Adaptive wide area damping control scheme with stochastic subspace identification and signal time delay compensation’, IET Gener. Transm. Distrib., 2012, 6, pp. 844852.
    44. 44)
      • 20. Li, Y., Rehtanz, C., Yang, D., et al: ‘Robust high-voltage direct current stabilising control using wide-area measurement and taking transmission time delay into consideration’, IET Gener. Transm. Distrib., 2011, 5, pp. 289297.
    45. 45)
      • 2. Yang, B., Jiang, L., Wang, L., et al: ‘Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 429436.
    46. 46)
      • 26. Padhy, B.P., Srivastava, S.C., Verma, N.K.: ‘A wide-area damping controller considering network input and output delays and packet drop’, IEEE Trans. Power Syst., 2017, 32, pp. 166176.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2057
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading